Update.
[pytorch.git] / tiny_vae.py
1 #!/usr/bin/env python
2
3 # @XREMOTE_HOST: elk.fleuret.org
4 # @XREMOTE_EXEC: python
5 # @XREMOTE_PRE: source ${HOME}/misc/venv/pytorch/bin/activate
6 # @XREMOTE_PRE: ln -sf ${HOME}/data/pytorch ./data
7 # @XREMOTE_GET: *.png
8
9 # Any copyright is dedicated to the Public Domain.
10 # https://creativecommons.org/publicdomain/zero/1.0/
11
12 # Written by Francois Fleuret <francois@fleuret.org>
13
14 import sys, os, argparse, time, math, itertools
15
16 import torch, torchvision
17
18 from torch import optim, nn
19 from torch.nn import functional as F
20
21 ######################################################################
22
23 device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
24
25 ######################################################################
26
27 parser = argparse.ArgumentParser(
28     description="Very simple implementation of a VAE for teaching."
29 )
30
31 parser.add_argument("--nb_epochs", type=int, default=100)
32
33 parser.add_argument("--learning_rate", type=float, default=2e-4)
34
35 parser.add_argument("--batch_size", type=int, default=100)
36
37 parser.add_argument("--data_dir", type=str, default="./data/")
38
39 parser.add_argument("--log_filename", type=str, default="train.log")
40
41 parser.add_argument("--latent_dim", type=int, default=32)
42
43 parser.add_argument("--nb_channels", type=int, default=128)
44
45 parser.add_argument("--no_dkl", action="store_true")
46
47 args = parser.parse_args()
48
49 log_file = open(args.log_filename, "w")
50
51 ######################################################################
52
53
54 def log_string(s):
55     t = time.strftime("%Y-%m-%d_%H:%M:%S - ", time.localtime())
56
57     if log_file is not None:
58         log_file.write(t + s + "\n")
59         log_file.flush()
60
61     print(t + s)
62     sys.stdout.flush()
63
64
65 ######################################################################
66
67
68 def sample_gaussian(param):
69     mu, log_var = param
70     std = log_var.mul(0.5).exp()
71     return torch.randn(mu.size(), device=mu.device) * std + mu
72
73
74 def log_p_gaussian(x, param):
75     mu, log_var = param
76     var = log_var.exp()
77     return (
78         (-0.5 * ((x - mu).pow(2) / var) - 0.5 * log_var - 0.5 * math.log(2 * math.pi))
79         .flatten(1)
80         .sum(1)
81     )
82
83
84 def dkl_gaussians(param_a, param_b):
85     mean_a, log_var_a = param_a[0].flatten(1), param_a[1].flatten(1)
86     mean_b, log_var_b = param_b[0].flatten(1), param_b[1].flatten(1)
87     var_a = log_var_a.exp()
88     var_b = log_var_b.exp()
89     return 0.5 * (
90         log_var_b - log_var_a - 1 + (mean_a - mean_b).pow(2) / var_b + var_a / var_b
91     ).sum(1)
92
93
94 ######################################################################
95
96
97 class LatentGivenImageNet(nn.Module):
98     def __init__(self, nb_channels, latent_dim):
99         super().__init__()
100
101         self.model = nn.Sequential(
102             nn.Conv2d(1, nb_channels, kernel_size=1),  # to 28x28
103             nn.ReLU(inplace=True),
104             nn.Conv2d(nb_channels, nb_channels, kernel_size=5),  # to 24x24
105             nn.ReLU(inplace=True),
106             nn.Conv2d(nb_channels, nb_channels, kernel_size=5),  # to 20x20
107             nn.ReLU(inplace=True),
108             nn.Conv2d(nb_channels, nb_channels, kernel_size=4, stride=2),  # to 9x9
109             nn.ReLU(inplace=True),
110             nn.Conv2d(nb_channels, nb_channels, kernel_size=3, stride=2),  # to 4x4
111             nn.ReLU(inplace=True),
112             nn.Conv2d(nb_channels, 2 * latent_dim, kernel_size=4),
113         )
114
115     def forward(self, x):
116         output = self.model(x).view(x.size(0), 2, -1)
117         mu, log_var = output[:, 0], output[:, 1]
118         return mu, log_var
119
120
121 class ImageGivenLatentNet(nn.Module):
122     def __init__(self, nb_channels, latent_dim):
123         super().__init__()
124
125         self.model = nn.Sequential(
126             nn.ConvTranspose2d(latent_dim, nb_channels, kernel_size=4),
127             nn.ReLU(inplace=True),
128             nn.ConvTranspose2d(
129                 nb_channels, nb_channels, kernel_size=3, stride=2
130             ),  # from 4x4
131             nn.ReLU(inplace=True),
132             nn.ConvTranspose2d(
133                 nb_channels, nb_channels, kernel_size=4, stride=2
134             ),  # from 9x9
135             nn.ReLU(inplace=True),
136             nn.ConvTranspose2d(nb_channels, nb_channels, kernel_size=5),  # from 20x20
137             nn.ReLU(inplace=True),
138             nn.ConvTranspose2d(nb_channels, 2, kernel_size=5),  # from 24x24
139         )
140
141     def forward(self, z):
142         output = self.model(z.view(z.size(0), -1, 1, 1))
143         mu, log_var = output[:, 0:1], output[:, 1:2]
144         # log_var.flatten(1)[...]=log_var.flatten(1)[:,:1]
145         return mu, log_var
146
147
148 ######################################################################
149
150 data_dir = os.path.join(args.data_dir, "mnist")
151
152 train_set = torchvision.datasets.MNIST(data_dir, train=True, download=True)
153 train_input = train_set.data.view(-1, 1, 28, 28).float()
154
155 test_set = torchvision.datasets.MNIST(data_dir, train=False, download=True)
156 test_input = test_set.data.view(-1, 1, 28, 28).float()
157
158 ######################################################################
159
160 model_q_Z_given_x = LatentGivenImageNet(
161     nb_channels=args.nb_channels, latent_dim=args.latent_dim
162 )
163
164 model_p_X_given_z = ImageGivenLatentNet(
165     nb_channels=args.nb_channels, latent_dim=args.latent_dim
166 )
167
168 optimizer = optim.Adam(
169     itertools.chain(model_p_X_given_z.parameters(), model_q_Z_given_x.parameters()),
170     lr=args.learning_rate,
171 )
172
173 model_p_X_given_z.to(device)
174 model_q_Z_given_x.to(device)
175
176 ######################################################################
177
178 train_input, test_input = train_input.to(device), test_input.to(device)
179
180 train_mu, train_std = train_input.mean(), train_input.std()
181 train_input.sub_(train_mu).div_(train_std)
182 test_input.sub_(train_mu).div_(train_std)
183
184 ######################################################################
185
186 zeros = train_input.new_zeros(1, args.latent_dim)
187
188 param_p_Z = zeros, zeros
189
190 for epoch in range(args.nb_epochs):
191     acc_loss = 0
192
193     for x in train_input.split(args.batch_size):
194         param_q_Z_given_x = model_q_Z_given_x(x)
195         z = sample_gaussian(param_q_Z_given_x)
196         param_p_X_given_z = model_p_X_given_z(z)
197         log_p_x_given_z = log_p_gaussian(x, param_p_X_given_z)
198
199         if args.no_dkl:
200             log_q_z_given_x = log_p_gaussian(z, param_q_Z_given_x)
201             log_p_z = log_p_gaussian(z, param_p_Z)
202             log_p_x_z = log_p_x_given_z + log_p_x_z
203             loss = -(log_p_x_z - log_q_z_given_x).mean()
204         else:
205             dkl_q_Z_given_x_from_p_Z = dkl_gaussians(param_q_Z_given_x, param_p_Z)
206             loss = (-log_p_x_given_z + dkl_q_Z_given_x_from_p_Z).mean()
207
208         optimizer.zero_grad()
209         loss.backward()
210         optimizer.step()
211
212         acc_loss += loss.item() * x.size(0)
213
214     log_string(f"acc_loss {epoch} {acc_loss/train_input.size(0)}")
215
216 ######################################################################
217
218
219 def save_image(x, filename):
220     x = x * train_std + train_mu
221     x = x.clamp(min=0, max=255) / 255
222     torchvision.utils.save_image(1 - x, filename, nrow=16, pad_value=0.8)
223
224
225 # Save a bunch of test images
226
227 x = test_input[:256]
228 save_image(x, "input.png")
229
230 # Save the same images after encoding / decoding
231
232 param_q_Z_given_x = model_q_Z_given_x(x)
233 z = sample_gaussian(param_q_Z_given_x)
234 param_p_X_given_z = model_p_X_given_z(z)
235 x = sample_gaussian(param_p_X_given_z)
236 save_image(x, "output.png")
237
238 # Generate a bunch of images
239
240 z = sample_gaussian(
241     param_p_Z[0].expand(x.size(0), -1), param_p_Z[1].expand(x.size(0), -1)
242 )
243 param_p_X_given_z = model_p_X_given_z(z)
244 x = sample_gaussian(param_p_X_given_z)
245 save_image(x, "synth.png")
246
247 ######################################################################