Update.
[pytorch.git] / tiny_vae.py
1 #!/usr/bin/env python
2
3 # @XREMOTE_HOST: elk.fleuret.org
4 # @XREMOTE_EXEC: python
5 # @XREMOTE_PRE: source ${HOME}/misc/venv/pytorch/bin/activate
6 # @XREMOTE_PRE: ln -sf ${HOME}/data/pytorch ./data
7 # @XREMOTE_GET: *.png
8
9 # Any copyright is dedicated to the Public Domain.
10 # https://creativecommons.org/publicdomain/zero/1.0/
11
12 # Written by Francois Fleuret <francois@fleuret.org>
13
14 import sys, os, argparse, time, math
15
16 import torch, torchvision
17
18 from torch import optim, nn
19 from torch.nn import functional as F
20
21 ######################################################################
22
23 device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
24
25 ######################################################################
26
27 parser = argparse.ArgumentParser(
28     description="Very simple implementation of a VAE for teaching."
29 )
30
31 parser.add_argument("--nb_epochs", type=int, default=25)
32
33 parser.add_argument("--learning_rate", type=float, default=1e-3)
34
35 parser.add_argument("--batch_size", type=int, default=100)
36
37 parser.add_argument("--data_dir", type=str, default="./data/")
38
39 parser.add_argument("--log_filename", type=str, default="train.log")
40
41 parser.add_argument("--latent_dim", type=int, default=32)
42
43 parser.add_argument("--nb_channels", type=int, default=32)
44
45 parser.add_argument("--no_dkl", action="store_true")
46
47 parser.add_argument("--beta", type=float, default=1.0)
48
49 args = parser.parse_args()
50
51 log_file = open(args.log_filename, "w")
52
53 ######################################################################
54
55
56 def log_string(s):
57     t = time.strftime("%Y-%m-%d_%H:%M:%S ", time.localtime())
58
59     if log_file is not None:
60         log_file.write(t + s + "\n")
61         log_file.flush()
62
63     print(t + s)
64     sys.stdout.flush()
65
66
67 ######################################################################
68
69
70 def sample_categorical(param):
71     dist = torch.distributions.Categorical(logits=param)
72     return (dist.sample().unsqueeze(1).float() - train_mu) / train_std
73
74
75 def log_p_categorical(x, param):
76     x = (x.squeeze(1) * train_std + train_mu).long().clamp(min=0, max=255)
77     param = param.permute(0, 3, 1, 2)
78     return -F.cross_entropy(param, x, reduction="none").flatten(1).sum(dim=1)
79
80
81 def sample_gaussian(param):
82     mean, log_var = param
83     std = log_var.mul(0.5).exp()
84     return torch.randn(mean.size(), device=mean.device) * std + mean
85
86
87 def log_p_gaussian(x, param):
88     mean, log_var, x = param[0].flatten(1), param[1].flatten(1), x.flatten(1)
89     var = log_var.exp()
90     return -0.5 * (((x - mean).pow(2) / var) + log_var + math.log(2 * math.pi)).sum(1)
91
92
93 def dkl_gaussians(param_a, param_b):
94     mean_a, log_var_a = param_a[0].flatten(1), param_a[1].flatten(1)
95     mean_b, log_var_b = param_b[0].flatten(1), param_b[1].flatten(1)
96     var_a = log_var_a.exp()
97     var_b = log_var_b.exp()
98     return 0.5 * (
99         log_var_b - log_var_a - 1 + (mean_a - mean_b).pow(2) / var_b + var_a / var_b
100     ).sum(1)
101
102
103 def dup_param(param, nb):
104     mean, log_var = param
105     s = (nb,) + (-1,) * (mean.dim() - 1)
106     return (mean.expand(s), log_var.expand(s))
107
108
109 ######################################################################
110
111
112 class VariationalAutoEncoder(nn.Module):
113     def __init__(self, nb_channels, latent_dim):
114         super().__init__()
115
116         self.encoder = nn.Sequential(
117             nn.Conv2d(1, nb_channels, kernel_size=1),  # to 28x28
118             nn.ReLU(inplace=True),
119             nn.Conv2d(nb_channels, nb_channels, kernel_size=5),  # to 24x24
120             nn.ReLU(inplace=True),
121             nn.Conv2d(nb_channels, nb_channels, kernel_size=5),  # to 20x20
122             nn.ReLU(inplace=True),
123             nn.Conv2d(nb_channels, nb_channels, kernel_size=4, stride=2),  # to 9x9
124             nn.ReLU(inplace=True),
125             nn.Conv2d(nb_channels, nb_channels, kernel_size=3, stride=2),  # to 4x4
126             nn.ReLU(inplace=True),
127             nn.Conv2d(nb_channels, 2 * latent_dim, kernel_size=4),
128         )
129
130         self.decoder = nn.Sequential(
131             nn.ConvTranspose2d(latent_dim, nb_channels, kernel_size=4),
132             nn.ReLU(inplace=True),
133             nn.ConvTranspose2d(
134                 nb_channels, nb_channels, kernel_size=3, stride=2
135             ),  # from 4x4
136             nn.ReLU(inplace=True),
137             nn.ConvTranspose2d(
138                 nb_channels, nb_channels, kernel_size=4, stride=2
139             ),  # from 9x9
140             nn.ReLU(inplace=True),
141             nn.ConvTranspose2d(nb_channels, nb_channels, kernel_size=5),  # from 20x20
142             nn.ReLU(inplace=True),
143             nn.ConvTranspose2d(nb_channels, 2, kernel_size=5),  # from 24x24
144         )
145
146     def encode(self, x):
147         output = self.encoder(x).view(x.size(0), 2, -1)
148         mu, log_var = output[:, 0], output[:, 1]
149         return mu, log_var
150
151     def decode(self, z):
152         # return self.decoder(z.view(z.size(0), -1, 1, 1)).permute(0, 2, 3, 1)
153         output = self.decoder(z.view(z.size(0), -1, 1, 1))
154         mu, log_var = output[:, 0:1], output[:, 1:2]
155         log_var.flatten(1)[...] = 1  # math.log(1e-1)
156         # log_var.flatten(1)[...] = log_var.flatten(1)[:, :1]
157         # log_var = log_var.clamp(min=2*math.log(1/256))
158         return mu, log_var
159
160
161 ######################################################################
162
163 data_dir = os.path.join(args.data_dir, "mnist")
164
165 train_set = torchvision.datasets.MNIST(data_dir, train=True, download=True)
166 train_input = train_set.data.view(-1, 1, 28, 28).float()
167
168 test_set = torchvision.datasets.MNIST(data_dir, train=False, download=True)
169 test_input = test_set.data.view(-1, 1, 28, 28).float()
170
171 ######################################################################
172
173
174 def save_images(model, prefix=""):
175     def save_image(x, filename):
176         x = x * train_std + train_mu
177         x = x.clamp(min=0, max=255) / 255
178         torchvision.utils.save_image(1 - x, filename, nrow=12, pad_value=1.0)
179         log_string(f"wrote {filename}")
180
181     # Save a bunch of train images
182
183     x = train_input[:36]
184     save_image(x, f"{prefix}train_input.png")
185
186     # Save the same images after encoding / decoding
187
188     param_q_Z_given_x = model.encode(x)
189     z = sample_gaussian(param_q_Z_given_x)
190     param_p_X_given_z = model.decode(z)
191     x = sample_gaussian(param_p_X_given_z)
192     save_image(x, f"{prefix}train_output.png")
193     save_image(param_p_X_given_z[0], f"{prefix}train_output_mean.png")
194
195     # Save a bunch of test images
196
197     x = test_input[:36]
198     save_image(x, f"{prefix}input.png")
199
200     # Save the same images after encoding / decoding
201
202     param_q_Z_given_x = model.encode(x)
203     z = sample_gaussian(param_q_Z_given_x)
204     param_p_X_given_z = model.decode(z)
205     x = sample_gaussian(param_p_X_given_z)
206     save_image(x, f"{prefix}output.png")
207     save_image(param_p_X_given_z[0], f"{prefix}output_mean.png")
208
209     # Generate a bunch of images
210
211     z = sample_gaussian(dup_param(param_p_Z, x.size(0)))
212     param_p_X_given_z = model.decode(z)
213     x = sample_gaussian(param_p_X_given_z)
214     save_image(x, f"{prefix}synth.png")
215     save_image(param_p_X_given_z[0], f"{prefix}synth_mean.png")
216
217
218 ######################################################################
219
220 model = VariationalAutoEncoder(nb_channels=args.nb_channels, latent_dim=args.latent_dim)
221
222 model.to(device)
223
224 ######################################################################
225
226 train_input, test_input = train_input.to(device), test_input.to(device)
227
228 train_mu, train_std = train_input.mean(), train_input.std()
229 train_input.sub_(train_mu).div_(train_std)
230 test_input.sub_(train_mu).div_(train_std)
231
232 ######################################################################
233
234 zeros = train_input.new_zeros(1, args.latent_dim)
235
236 param_p_Z = zeros, zeros
237
238 for n_epoch in range(args.nb_epochs):
239     optimizer = optim.Adam(
240         model.parameters(),
241         lr=args.learning_rate,
242     )
243
244     acc_loss = 0
245
246     for x in train_input.split(args.batch_size):
247         param_q_Z_given_x = model.encode(x)
248         z = sample_gaussian(param_q_Z_given_x)
249         param_p_X_given_z = model.decode(z)
250         log_p_x_given_z = log_p_gaussian(x, param_p_X_given_z)
251
252         if args.no_dkl:
253             log_q_z_given_x = log_p_gaussian(z, param_q_Z_given_x)
254             log_p_z = log_p_gaussian(z, param_p_Z)
255             log_p_x_z = log_p_x_given_z + log_p_z
256             loss = -(log_p_x_z - log_q_z_given_x).mean()
257         else:
258             dkl_q_Z_given_x_from_p_Z = dkl_gaussians(param_q_Z_given_x, param_p_Z)
259             loss = -(log_p_x_given_z - args.beta * dkl_q_Z_given_x_from_p_Z).mean()
260
261         optimizer.zero_grad()
262         loss.backward()
263         optimizer.step()
264
265         acc_loss += loss.item() * x.size(0)
266
267     log_string(f"acc_loss {n_epoch} {acc_loss/train_input.size(0)}")
268
269     if (n_epoch + 1) % 25 == 0:
270         save_images(model, f"epoch_{n_epoch+1:04d}_")
271
272 ######################################################################