else:
self.cache_y[:, bs.first : bs.first + bs.nb] = self.f(bs.slice())
- bs.x = self.cache_y
-
- return bs
+ return BracketedSequence(self.cache_y, bs.first, bs.nb)
##############################
self.f = f[0] if len(f) == 1 else nn.Sequential(*f)
def forward(self, bs):
- bs.x = bs.x + self.f(bs).x
- return bs
+ return BracketedSequence(bs.x + self.f(bs).x, bs.first, bs.nb)
##############################
bs.slice() + self.pe[bs.first : bs.first + bs.nb]
)
- bs.x = self.cache_y
-
- return bs
+ return BracketedSequence(self.cache_y, bs.first, bs.nb)
##############################
def randw(*d):
return nn.Parameter(torch.randn(*d) / math.sqrt(d[-1]))
+ assert causal, "TODO: Switch off the cache when non-causal!!!"
self.causal = causal
self.attention_dropout = attention_dropout
q = torch.einsum(
"ntc,hdc->nhtd", x_q[:, bs_q.first : bs_q.first + bs_q.nb], self.w_q
)
+
self.cache_k[:, :, bs_q.first : bs_q.first + bs_q.nb] = torch.einsum(
"ntc,hdc->nhtd", x_q[:, bs_q.first : bs_q.first + bs_q.nb], self.w_k
)
self.cache_y[:, bs_q.first : bs_q.first + bs_q.nb] = y @ self.w_o
- bs_q.x = self.cache_y
-
- return bs_q
+ return BracketedSequence(self.cache_y, bs_q.first, bs_q.nb)
##############################
m.weight.fill_(1.0)
def forward(self, bs):
- bs.x = F.pad(bs.x, (1, -1))
+ bs = BracketedSequence(F.pad(bs.x, (1, -1)), bs.first, bs.nb)
bs = self.embedding(bs)
bs = self.trunk(bs)
bs = self.readout(bs)
if __name__ == "__main__":
print("Basic check.")
- vocabulary_size = 10
- x = torch.randint(vocabulary_size, (9, 7))
+ vocabulary_size = 3
+ x = torch.randint(vocabulary_size, (1, 5))
model = MyGPT(
vocabulary_size=vocabulary_size,
- dim_model=18,
- dim_keys=50,
- dim_hidden=100,
+ dim_model=4,
+ dim_keys=2,
+ dim_hidden=2,
nb_heads=2,
nb_blocks=1,
dropout=0.1,
+ causal=True,
)
model.eval()
y1 = model(BracketedSequence(x)).x
-
y2 = torch.randn_like(y1)
for s in range(x.size(1)):
z = model(BracketedSequence(x, s, 1))
- y2[:, s] = z.x[:, s]
+ y2[:, s] = z.slice()
print(f"error={((y1 - y2).norm() / (y1.norm() + y2.norm())).item()}")