dag:setInput(a)
dag:setOutput({ d, e })
--- We check it works when we put it into a nn.Sequential
+-- Check the output of the dot file
+print('Writing /tmp/graph.dot')
+dag:saveDot('/tmp/graph.dot')
+
+-- Let's make a model where the dag is inside another nn.Container.
model = nn.Sequential()
:add(nn.Linear(50, 50))
:add(dag)
local output = model:updateOutput(input):clone()
output:uniform()
+-- Check that DAG:accGradParameters and friends work okay
print('Gradient estimate error ' .. checkGrad(model, nn.MSECriterion(), input, output))
-print('Writing /tmp/graph.dot')
-dag:saveDot('/tmp/graph.dot')
+-- Check that we can save and reload the model
+model:clearState()
+torch.save('/tmp/test.t7', model)
+local otherModel = torch.load('/tmp/test.t7')
+print('Gradient estimate error ' .. checkGrad(otherModel, nn.MSECriterion(), input, output))