0,
)
- image_name = os.path.join(args.result_dir, f"result_{n_epoch:04d}.png")
+ image_name = os.path.join(args.result_dir, f"picoclvr_result_{n_epoch:04d}.png")
torchvision.utils.save_image(
img / 255.0, image_name, nrow=nb_per_primer, padding=1, pad_value=1.0
)
log_string(f"wrote {image_name}")
+######################################################################
+
+
+class TaskMNIST(Task):
+ def __init__(self, batch_size, device=torch.device("cpu")):
+ self.device = device
+ self.batch_size = batch_size
+
+ def batches(self, split="train"):
+ assert split in {"train", "test"}
+ data_set = torchvision.datasets.MNIST(
+ root="./data", train=(split == "train"), download=True
+ )
+ data_input = data_set.data.view(-1, 28 * 28).long()
+ if args.nb_train_samples is not None:
+ data_input = data_input[: args.nb_train_samples]
+ for batch in tqdm.tqdm(
+ data_input.split(self.batch_size), desc=f"epoch-{split}"
+ ):
+ yield batch
+
+ def vocabulary_size(self):
+ return 256
+
+ def produce_results(self, n_epoch, model):
+ results = torch.empty(64, 28 * 28, device=self.device, dtype=torch.int64)
+ ar_mask = torch.full_like(results, 1)
+ masked_inplace_autoregression(
+ model, self.batch_size, results, ar_mask, device=self.device
+ )
+ image_name = os.path.join(args.result_dir, f"result_mnist_{n_epoch:04d}.png")
+ torchvision.utils.save_image(
+ 1 - results.reshape(-1, 1, 28, 28) / 255.0,
+ image_name,
+ nrow=16,
+ pad_value=0.8,
+ )
+ log_string(f"wrote {image_name}")
+
+
######################################################################
import maze
mazes, paths = self.seq2map(input)
_, predicted_paths = self.seq2map(result)
- filename = f"result_{n_epoch:04d}.png"
+
+ filename = os.path.join(args.result_dir, f"result_{n_epoch:04d}.png")
maze.save_image(
- os.path.join(args.result_dir, filename),
+ filename,
mazes=mazes,
target_paths=paths,
predicted_paths=predicted_paths,
pruner_eval=picoclvr_pruner_eval,
)
+elif args.task == "mnist":
+ task = TaskMNIST(
+ batch_size=args.batch_size,
+ device=device,
+ )
+
elif args.task == "maze":
task = TaskMaze(
nb_train_samples=args.nb_train_samples,