train_loss = F.cross_entropy(output, input)
if lambda_entropy > 0:
- loss = loss + lambda_entropy * loss_H(z, h_threshold=0.5)
+ train_loss = train_loss + lambda_entropy * loss_H(z, h_threshold=0.5)
acc_train_loss += train_loss.item() * input.size(0)
frame2seq,
seq2frame,
) = create_data_and_processors(
- # 10000, 1000,
- 100,
- 100,
- nb_epochs=2,
+ 25000, 1000,
+ nb_epochs=10,
mode="first_last",
nb_steps=20,
)
- input = test_input[:64]
+ input = test_input[:256]
seq = frame2seq(input)
-
- print(f"{seq.size()=} {seq.dtype=} {seq.min()=} {seq.max()=}")
-
output = seq2frame(seq)
torchvision.utils.save_image(
- input.float() / (Box.nb_rgb_levels - 1), "orig.png", nrow=8
+ input.float() / (Box.nb_rgb_levels - 1), "orig.png", nrow=16
)
torchvision.utils.save_image(
- output.float() / (Box.nb_rgb_levels - 1), "qtiz.png", nrow=8
+ output.float() / (Box.nb_rgb_levels - 1), "qtiz.png", nrow=16
)