def task_islands(self, A, f_A, B, f_B):
for X, f_X in [(A, f_A), (B, f_B)]:
+ nb_on_border = 0
+ for _ in range(10):
+ for k in torch.randperm(self.height * self.width):
+ i, j = k % self.height, k // self.height
+ border = (
+ i == 0 or i == self.height - 1 or j == 0 or j == self.width - 1
+ )
+ no, nq, nq_diag = self.contact(X, i, j, 1)
+
+ if (
+ (nq > 0 and not border)
+ or (nq == 0 and border and nb_on_border < 4)
+ ) and nq_diag == 0:
+ X[i, j] = 1
+ if border:
+ nb_on_border += 1
+
while True:
- i, j = torch.randint(self.height, (1,)), torch.randint(self.width, (1,))
- if (
- i == 0
- or i == self.height - 1
- or j == 0
- or j == self.width - 1
- or X[i, j] == 1
- ):
- break
- while True:
- di, dj = torch.randint(3, (2,)) - 1
- if abs(di) + abs(dj) > 0:
- break
- X[i, j] = 1
- while True:
- i, j = i + di, j + dj
- if i < 0 or i >= self.height or j < 0 or j >= self.width:
- break
- b = (
- i == 0
- or i == self.height - 1
- or j == 0
- or j == self.width - 1
- or X[i, j] == 1
- )
- X[i, j] = 1
- if b:
+ nb_fixes = 0
+ for i in range(1, self.height - 1):
+ for j in range(1, self.width - 1):
+ if (
+ X[i, j] == 1
+ and X[i - 1, j] + X[i + 1, j] + X[i, j - 1] + X[i, j + 1]
+ == 1
+ ):
+ X[i, j] = 0
+ nb_fixes += 1
+
+ if nb_fixes == 0:
break
######################################################################
grids = Grids()
- for t in grids.all_tasks():
- # for t in [grids.task_islands]:
+ # for t in grids.all_tasks():
+ for t in [grids.task_islands]:
print(t.__name__)
prompts, answers = grids.generate_prompts_and_answers(nb, tasks=[t])
grids.save_quizzes("/tmp", t.__name__, prompts[:nb], answers[:nb], nrow=4)
t_next = dist.sample()
all_n = torch.arange(t_next.size(0))
- seq_logproba += logits[all_n, t_next].sum(dim=-1)
+
+ seq_logproba += logits[all_n, t_next]
input[:, s] = ar_mask[:, s] * t_next + (1 - ar_mask[:, s]) * input[:, s]
nb_correct = 0
+ seq_logproba[...] = 0.0
+
for model in models_for_validation:
result = c_quizzes.clone()
- seq_logproba[...] = 0.0
-
ar_mask = self.make_ar_mask(result)
masked_inplace_autoregression(