parser = argparse.ArgumentParser(description="Tiny LeNet-like auto-encoder.")
-parser.add_argument("--nb_epochs", type=int, default=25)
+parser.add_argument("--nb_epochs", type=int, default=100)
parser.add_argument("--batch_size", type=int, default=100)
)
-def dkl_gaussians(mu_a, log_var_a, mu_b, log_var_b):
- mu_a, log_var_a = mu_a.flatten(1), log_var_a.flatten(1)
- mu_b, log_var_b = mu_b.flatten(1), log_var_b.flatten(1)
+def dkl_gaussians(mean_a, log_var_a, mean_b, log_var_b):
+ mean_a, log_var_a = mean_a.flatten(1), log_var_a.flatten(1)
+ mean_b, log_var_b = mean_b.flatten(1), log_var_b.flatten(1)
var_a = log_var_a.exp()
var_b = log_var_b.exp()
return 0.5 * (
- log_var_b - log_var_a - 1 + (mu_a - mu_b).pow(2) / var_b + var_a / var_b
+ log_var_b - log_var_a - 1 + (mean_a - mean_b).pow(2) / var_b + var_a / var_b
).sum(1)
######################################################################
-mu_p_Z = train_input.new_zeros(1, args.latent_dim)
-log_var_p_Z = mu_p_Z
+mean_p_Z = train_input.new_zeros(1, args.latent_dim)
+log_var_p_Z = mean_p_Z
for epoch in range(args.nb_epochs):
acc_loss = 0
for x in train_input.split(args.batch_size):
- mu_q_Z_given_x, log_var_q_Z_given_x = model_q_Z_given_x(x)
- z = sample_gaussian(mu_q_Z_given_x, log_var_q_Z_given_x)
- mu_p_X_given_z, log_var_p_X_given_z = model_p_X_given_z(z)
+ mean_q_Z_given_x, log_var_q_Z_given_x = model_q_Z_given_x(x)
+ z = sample_gaussian(mean_q_Z_given_x, log_var_q_Z_given_x)
+ mean_p_X_given_z, log_var_p_X_given_z = model_p_X_given_z(z)
if args.no_dkl:
- log_q_z_given_x = log_p_gaussian(z, mu_q_Z_given_x, log_var_q_Z_given_x)
+ log_q_z_given_x = log_p_gaussian(z, mean_q_Z_given_x, log_var_q_Z_given_x)
log_p_x_z = log_p_gaussian(
- x, mu_p_X_given_z, log_var_p_X_given_z
- ) + log_p_gaussian(z, mu_p_Z, log_var_p_Z)
+ x, mean_p_X_given_z, log_var_p_X_given_z
+ ) + log_p_gaussian(z, mean_p_Z, log_var_p_Z)
loss = -(log_p_x_z - log_q_z_given_x).mean()
else:
- log_p_x_given_z = log_p_gaussian(x, mu_p_X_given_z, log_var_p_X_given_z)
+ log_p_x_given_z = log_p_gaussian(x, mean_p_X_given_z, log_var_p_X_given_z)
dkl_q_Z_given_x_from_p_Z = dkl_gaussians(
- mu_q_Z_given_x, log_var_q_Z_given_x, mu_p_Z, log_var_p_Z
+ mean_q_Z_given_x, log_var_q_Z_given_x, mean_p_Z, log_var_p_Z
)
loss = (-log_p_x_given_z + dkl_q_Z_given_x_from_p_Z).mean()
# Save the same images after encoding / decoding
-mu_q_Z_given_x, log_var_q_Z_given_x = model_q_Z_given_x(x)
-z = sample_gaussian(mu_q_Z_given_x, log_var_q_Z_given_x)
-mu_p_X_given_z, log_var_p_X_given_z = model_p_X_given_z(z)
-x = sample_gaussian(mu_p_X_given_z, log_var_p_X_given_z)
+mean_q_Z_given_x, log_var_q_Z_given_x = model_q_Z_given_x(x)
+z = sample_gaussian(mean_q_Z_given_x, log_var_q_Z_given_x)
+mean_p_X_given_z, log_var_p_X_given_z = model_p_X_given_z(z)
+x = sample_gaussian(mean_p_X_given_z, log_var_p_X_given_z)
save_image(x, "output.png")
# Generate a bunch of images
-z = sample_gaussian(mu_p_Z.expand(x.size(0), -1), log_var_p_Z.expand(x.size(0), -1))
-mu_p_X_given_z, log_var_p_X_given_z = model_p_X_given_z(z)
-x = sample_gaussian(mu_p_X_given_z, log_var_p_X_given_z)
+z = sample_gaussian(mean_p_Z.expand(x.size(0), -1), log_var_p_Z.expand(x.size(0), -1))
+mean_p_X_given_z, log_var_p_X_given_z = model_p_X_given_z(z)
+x = sample_gaussian(mean_p_X_given_z, log_var_p_X_given_z)
save_image(x, "synth.png")
######################################################################