Update.
authorFrançois Fleuret <francois@fleuret.org>
Sat, 6 Jul 2024 05:02:15 +0000 (08:02 +0300)
committerFrançois Fleuret <francois@fleuret.org>
Sat, 6 Jul 2024 05:02:15 +0000 (08:02 +0300)
main.py
quizz_machine.py

diff --git a/main.py b/main.py
index 43241dd..585cbdf 100755 (executable)
--- a/main.py
+++ b/main.py
@@ -13,7 +13,7 @@ from torch.nn import functional as F
 
 import ffutils
 import mygpt
-import sky, reasoning, quizz_machine
+import sky, reasoning, quiz_machine
 
 # world quizzes vs. culture quizzes
 
@@ -256,7 +256,7 @@ elif args.problem == "reasoning":
 else:
     raise ValueError
 
-quizz_machine = quizz_machine.QuizzMachine(
+quiz_machine = quiz_machine.QuizMachine(
     problem=problem,
     nb_train_samples=args.nb_train_samples,
     nb_test_samples=args.nb_test_samples,
@@ -271,7 +271,7 @@ quizz_machine = quizz_machine.QuizzMachine(
 
 log_string(f"device {device}")
 
-vocabulary_size = quizz_machine.vocabulary_size()
+vocabulary_size = quiz_machine.vocabulary_size()
 
 log_string(f"vocabulary_size {vocabulary_size}")
 
@@ -280,8 +280,8 @@ log_string(f"vocabulary_size {vocabulary_size}")
 # Compute the entropy of the training tokens
 
 token_count = 0
-for input in quizz_machine.batches(split="train", desc="train-entropy"):
-    token_count += F.one_hot(input, num_classes=quizz_machine.vocabulary_size()).sum(
+for input in quiz_machine.batches(split="train", desc="train-entropy"):
+    token_count += F.one_hot(input, num_classes=quiz_machine.vocabulary_size()).sum(
         (0, 1)
     )
 token_probas = token_count / token_count.sum()
@@ -305,11 +305,11 @@ if args.max_percents_of_test_in_train >= 0:
 
     nb_test, nb_in_train = 0, 0
     for test_subset in subsets_as_tuples(
-        quizz_machine.batches(split="test", desc="test-check"), 25000
+        quiz_machine.batches(split="test", desc="test-check"), 25000
     ):
         in_train = set()
         for train_subset in subsets_as_tuples(
-            quizz_machine.batches(split="train", desc="train-check"), 25000
+            quiz_machine.batches(split="train", desc="train-check"), 25000
         ):
             in_train.update(test_subset.intersection(train_subset))
         nb_in_train += len(in_train)
@@ -326,14 +326,14 @@ if args.max_percents_of_test_in_train >= 0:
 ##############################
 
 
-def one_epoch(model, quizz_machine):
+def one_epoch(model, quiz_machine):
     optimizer = torch.optim.Adam(model.parameters(), lr=args.learning_rate)
 
     model.train()
 
     nb_train_samples, acc_train_loss = 0, 0.0
 
-    for input in quizz_machine.batches(split="train"):
+    for input in quiz_machine.batches(split="train"):
         input = input.to(device)
 
         if nb_train_samples % args.batch_size == 0:
@@ -358,14 +358,14 @@ def one_epoch(model, quizz_machine):
 ######################################################################
 
 
-def run_tests(model, quizz_machine, deterministic_synthesis):
+def run_tests(model, quiz_machine, deterministic_synthesis):
     with torch.autograd.no_grad():
         model.eval()
 
         nb_test_samples, acc_test_loss = 0, 0.0
         nb_samples_accumulated = 0
 
-        for input in quizz_machine.batches(split="test"):
+        for input in quiz_machine.batches(split="test"):
             input = input.to(device)
 
             bs = model(mygpt.BracketedSequence(input))
@@ -381,7 +381,7 @@ def run_tests(model, quizz_machine, deterministic_synthesis):
 
         log_string(f"test_perplexity {n_epoch} {test_perplexity}")
 
-        model.main_test_accuracy = quizz_machine.produce_results(
+        model.main_test_accuracy = quiz_machine.produce_results(
             n_epoch=n_epoch,
             model=model,
             result_dir=args.result_dir,
@@ -402,11 +402,11 @@ def valid_c_quizzes(recorded, criteria):
 
 def create_c_quizzes(
     models,
-    quizz_machine,
+    quiz_machine,
     nb_for_train=1000,
     nb_for_test=100,
 ):
-    recorded = []
+    quizzes_and_nb_correct_records = []
 
     nb_to_create = nb_for_train + nb_for_test
 
@@ -418,18 +418,21 @@ def create_c_quizzes(
 
     file_name = os.path.join(args.result_dir, f"culture_c_quiz_{n_epoch:04d}_logp.dat")
     with open(file_name, "w") as logp_file:
-        while valid_c_quizzes(recorded, standard_validity).size(0) < nb_to_create:
+        while (
+            valid_c_quizzes(quizzes_and_nb_correct_records, standard_validity).size(0)
+            < nb_to_create
+        ):
             # Select a model at random to generate the new quizzes
 
             model_for_generation = models[torch.randint(len(models), (1,))]
 
-            c_quizzes = quizz_machine.generate_quizzes(
+            c_quizzes = quiz_machine.generate_quizzes(
                 nb_to_create,
                 model_for_generation=model_for_generation,
                 temperature=args.generation_temperature,
             )
 
-            nb_correct, seq_logproba = quizz_machine.compute_correctness(
+            nb_correct, seq_logproba = quiz_machine.compute_correctness(
                 c_quizzes,
                 models,
                 bidirectional_validation=args.bidirectional_validation,
@@ -445,12 +448,14 @@ def create_c_quizzes(
                     len(models) + 1, nb_correct.size(), device=c_quizzes.device
                 )
 
-            recorded.append((c_quizzes, nb_correct))
+            quizzes_and_nb_correct_records.append((c_quizzes, nb_correct))
 
             nv = F.one_hot(nb_correct, num_classes=len(models) + 1).sum(0)
             nv = " ".join([str(x.item()) for x in nv])
 
-            nb_validated = valid_c_quizzes(recorded, standard_validity).size(0)
+            nb_validated = valid_c_quizzes(
+                quizzes_and_nb_correct_records, standard_validity
+            ).size(0)
 
             log_string(
                 f"keep c_quizzes model {model_for_generation.id} kept {nv} nb_accumulated {nb_validated} / {nb_to_create}"
@@ -458,10 +463,12 @@ def create_c_quizzes(
 
     # store the new c_quizzes which have been validated
 
-    new_c_quizzes = valid_c_quizzes(recorded, standard_validity)
+    new_c_quizzes = valid_c_quizzes(quizzes_and_nb_correct_records, standard_validity)
+
+    quiz_machine.reverse_random_half_in_place(new_c_quizzes)
 
-    quizz_machine.store_c_quizzes(new_c_quizzes[:nb_for_train], for_train=True)
-    quizz_machine.store_c_quizzes(new_c_quizzes[nb_for_train:], for_train=False)
+    quiz_machine.store_c_quizzes(new_c_quizzes[:nb_for_train], for_train=True)
+    quiz_machine.store_c_quizzes(new_c_quizzes[nb_for_train:], for_train=False)
 
     # save a bunch of images to investigate what quizzes with a
     # certain nb of correct predictions look like
@@ -473,10 +480,12 @@ def create_c_quizzes(
             else ""
         )
 
-        q = valid_c_quizzes(recorded, criteria=lambda nb_correct: nb_correct == n)[:72]
+        q = valid_c_quizzes(
+            quizzes_and_nb_correct_records, criteria=lambda nb_correct: nb_correct == n
+        )[:72]
 
         if q.size(0) > 0:
-            quizz_machine.save_quizzes(
+            quiz_machine.save_quizzes(
                 args.result_dir, f"culture_c_quiz_{n_epoch:04d}_N{n}{s}", q
             )
 
@@ -522,21 +531,21 @@ for n_epoch in range(args.nb_epochs):
         f"training model {weakest_model.id} main_test_accuracy {weakest_model.main_test_accuracy}"
     )
 
-    one_epoch(weakest_model, quizz_machine)
+    one_epoch(weakest_model, quiz_machine)
 
     log_string(
-        f"train_set_composition w_quizzes {quizz_machine.nb_batch_w_quizzes} c_quizzes {quizz_machine.nb_batch_c_quizzes}"
+        f"train_set_composition w_quizzes {quiz_machine.nb_batch_w_quizzes} c_quizzes {quiz_machine.nb_batch_c_quizzes}"
     )
 
-    run_tests(weakest_model, quizz_machine, deterministic_synthesis=False)
+    run_tests(weakest_model, quiz_machine, deterministic_synthesis=False)
 
     log_string(
-        f"test_set_composition w_quizzes {quizz_machine.nb_batch_w_quizzes} c_quizzes {quizz_machine.nb_batch_c_quizzes}"
+        f"test_set_composition w_quizzes {quiz_machine.nb_batch_w_quizzes} c_quizzes {quiz_machine.nb_batch_c_quizzes}"
     )
 
     # Replace a fraction of the w_quizzes with fresh ones
 
-    quizz_machine.renew_w_quizzes(args.nb_train_samples // args.nb_gpts)
+    quiz_machine.renew_w_quizzes(args.nb_train_samples // args.nb_gpts)
 
     # If all the models are good enough, generate new quizzes and
     # re-compute the test errors
@@ -544,13 +553,13 @@ for n_epoch in range(args.nb_epochs):
     if min([m.main_test_accuracy for m in models]) >= args.accuracy_to_make_c_quizzes:
         create_c_quizzes(
             models,
-            quizz_machine,
+            quiz_machine,
             nb_for_train=nb_new_c_quizzes_for_train,
             nb_for_test=nb_new_c_quizzes_for_test,
         )
 
         for model in models:
-            run_tests(model, quizz_machine, deterministic_synthesis=False)
+            run_tests(model, quiz_machine, deterministic_synthesis=False)
 
 
 ######################################################################
index 92b5799..0c76239 100755 (executable)
@@ -104,7 +104,7 @@ def masked_inplace_autoregression(
 ######################################################################
 
 
-class QuizzMachine:
+class QuizMachine:
     def indices_forward_and_backward(self, quizzes):
         i_forward = quizzes[:, 0] == self.token_forward
         j_forward = quizzes[:, 1 + self.prompt_len] == self.token_forward
@@ -149,6 +149,11 @@ class QuizzMachine:
 
         return m * forward_to_backward + (1 - m) * backward_to_forward
 
+    def reverse_random_half_in_place(self, quizzes):
+        i = torch.rand(quizzes.size(0)) < 0.5
+        if i.any():
+            quizzes[i] = self.reverse_time(quizzes[i])
+
     def make_ar_mask(self, quizzes, first=False):
         i_forward, i_backward = self.indices_forward_and_backward(quizzes)
 
@@ -179,20 +184,12 @@ class QuizzMachine:
         result = []
 
         for prompt, answer in zip(prompts, answers):
-            if torch.rand(1) < 0.5:
-                a = [
-                    torch.tensor([self.token_forward]),
-                    prompt,
-                    torch.tensor([self.token_forward]),
-                    answer,
-                ]
-            else:
-                a = [
-                    torch.tensor([self.token_backward]),
-                    answer,
-                    torch.tensor([self.token_backward]),
-                    prompt,
-                ]
+            a = [
+                torch.tensor([self.token_forward]),
+                prompt,
+                torch.tensor([self.token_forward]),
+                answer,
+            ]
 
             result.append(torch.cat(a, dim=0)[None, :])
 
@@ -224,11 +221,13 @@ class QuizzMachine:
         self.prompt_len = None
         self.answer_len = None
 
-        self.train_w_quizzes = self.generate_token_sequences(nb_train_samples).to(
-            device
-        )
+        self.train_w_quizzes = self.generate_token_sequences(nb_train_samples)
+        self.reverse_random_half_in_place(self.train_w_quizzes)
+        self.train_w_quizzes = self.train_w_quizzes.to(device)
 
         self.test_w_quizzes = self.generate_token_sequences(nb_test_samples).to(device)
+        self.reverse_random_half_in_place(self.test_w_quizzes)
+        self.test_w_quizzes = self.test_w_quizzes.to(device)
 
         self.train_c_quizzes = []
         self.test_c_quizzes = []
@@ -238,7 +237,6 @@ class QuizzMachine:
                 result_dir,
                 "culture_w_quizzes",
                 self.train_w_quizzes[:72],
-                n_backward=self.train_w_quizzes[:72, 0] == self.token_backward,
             )
 
     def save_quizzes(
@@ -246,30 +244,25 @@ class QuizzMachine:
         result_dir,
         filename_prefix,
         quizzes,
-        n_backward=None,
         mistakes=None,
     ):
         quizzes = quizzes.clone()
-        forward = quizzes[quizzes[:, 0] == self.token_forward]
-        ib = quizzes[:, 0] == self.token_backward
-        backward = quizzes[ib]
-        assert forward.size(0) + backward.size(0) == quizzes.size(0)
-        quizzes[ib] = self.reverse_time(quizzes[ib])
-
-        if n_backward is None:
-            predicted_prompts = None
-            predicted_answers = None
+        n_forward = quizzes[quizzes[:, 0] == self.token_forward]
+        n_backward = quizzes[:, 0] == self.token_backward
+        backward = quizzes[n_backward]
+        assert n_forward.size(0) + backward.size(0) == quizzes.size(0)
+        quizzes[n_backward] = self.reverse_time(quizzes[n_backward])
+
+        predicted_prompts = n_backward.long()
+        predicted_answers = 1 - predicted_prompts
+        if mistakes is not None:
+            # 0/-1/+1 ~ not-to-predict / predicted wrong / predicted correct
+            predicted_prompts *= mistakes
+            predicted_answers *= mistakes
         else:
-            predicted_prompts = n_backward.long()
-            predicted_answers = 1 - predicted_prompts
-            if mistakes is not None:
-                # 0/-1/+1 ~ not-to-predict / predicted wrong / predicted correct
-                predicted_prompts *= mistakes
-                predicted_answers *= mistakes
-            else:
-                # 0/2 ~ not-to-predict / to predict
-                predicted_prompts *= 2
-                predicted_answers *= 2
+            # 0/2 ~ not-to-predict / to predict
+            predicted_prompts *= 2
+            predicted_answers *= 2
 
         self.problem.save_quizzes(
             result_dir,
@@ -357,7 +350,7 @@ class QuizzMachine:
                 back_input[:, 2 + self.prompt_len :] = input[
                     n_backward, 1 : 1 + self.answer_len
                 ]
-                result[n_backward], correct[n_backward] = compute_accuracy(back_input)
+                _, correct[n_backward] = compute_accuracy(back_input)
 
             if log_prefix is not None:
                 forward_nb_correct = correct[n_forward].sum()
@@ -390,7 +383,6 @@ class QuizzMachine:
             result_dir,
             f"culture_prediction_{n_epoch:04d}_{model.id:02d}",
             quizzes=test_result[:72],
-            n_backward=self.test_w_quizzes[:72, 0] == self.token_backward,
             mistakes=test_correct[:72] * 2 - 1,
         )
 
@@ -400,7 +392,9 @@ class QuizzMachine:
         input = self.train_w_quizzes if for_train else self.test_w_quizzes
         nb = min(nb, input.size(0))
         input[:-nb] = input[nb:].clone()
-        input[-nb:] = self.generate_token_sequences(nb).to(self.device)
+        fresh_w_quizzes = self.generate_token_sequences(nb)
+        self.reverse_random_half_in_place(fresh_w_quizzes)
+        input[-nb:] = fresh_w_quizzes.to(self.device)
 
     def store_c_quizzes(self, new_c_quizzes, for_train=True):
         if for_train: