### agtree2dot.save_dot(variable, variable_labels, result_file) ###
-Saves into `result_file` a dot file corresponding to the autograd graph for `variable`, which can be either a single `Variable` or a set of `Variable`s. The dictionary `variable_labels` associates strings to some variables, which will be used in the resulting graph.
+Saves into `result_file` a dot file corresponding to the autograd
+graph for the `Variable` `variable`. The dictionary `variable_labels`
+associates strings to some variables, which will be used in the
+resulting graph.
## Example ##
-A typical use would be:
+A typical use is provided in [mlp.py](https://fleuret.org/git-extract/agtree2dot/mlp.py):
```python
-import torch
+import subprocess
from torch import nn
from torch.nn import functional as fn
loss = criterion(output, target)
agtree2dot.save_dot(loss,
- { input: 'input', target: 'target', loss: 'loss' },
+ {
+ input: 'input',
+ target: 'target',
+ loss: 'loss',
+ mlp.fc1.weight: 'weight1',
+ mlp.fc1.bias: 'bias1',
+ mlp.fc2.weight: 'weight2',
+ mlp.fc2.bias: 'bias2',
+ },
open('./mlp.dot', 'w'))
-```
-which would generate a file mlp.dot, which can then be translated to
-pdf using the [Graphviz tools](http://www.graphviz.org/)
+print('Generated mlp.dot')
-```
-dot mlp.dot -Lg -T pdf -o mlp.pdf
+try:
+ subprocess.check_call(["dot", "mlp.dot", "-Lg", "-T", "pdf", "-o", "mlp.pdf" ])
+except subprocess.CalledProcessError:
+ print('Calling the dot command failed. Is Graphviz installed?')
+ sys.exit(1)
+
+print('Generated mlp.pdf')
```
-to produce [mlp.pdf.](https://fleuret.org/git-extract/agtree2dot/mlp.pdf)
+which would generate a file mlp.dot and try to generate
+[mlp.pdf](https://fleuret.org/git-extract/agtree2dot/mlp.pdf) from it
+with [Graphviz tools.](http://www.graphviz.org/)
######################################################################
-def build_ag_graph_lists(u, node_labels, node_list, link_list):
+def fill_graph_lists(u, node_labels, node_list, link_list):
if u is not None and not u in node_list:
node = Node(len(node_list) + 1,
node_list[u] = node
if isinstance(u, torch.autograd.Variable):
- build_ag_graph_lists(u.grad_fn, node_labels, node_list, link_list)
+ fill_graph_lists(u.grad_fn, node_labels, node_list, link_list)
add_link(node_list, link_list, u, 0, u.grad_fn, 0)
- else:
- if hasattr(u, 'next_functions'):
- i = 0
- for v, j in u.next_functions:
- build_ag_graph_lists(v, node_labels, node_list, link_list)
- add_link(node_list, link_list, u, i, v, j)
- i += 1
+
+ if hasattr(u, 'variable'):
+ fill_graph_lists(u.variable, node_labels, node_list, link_list)
+ add_link(node_list, link_list, u, 0, u.variable, 0)
+
+ if hasattr(u, 'next_functions'):
+ i = 0
+ for v, j in u.next_functions:
+ fill_graph_lists(v, node_labels, node_list, link_list)
+ add_link(node_list, link_list, u, i, v, j)
+ i += 1
######################################################################
for n in node_list:
node = node_list[n]
- out.write(
- ' ' + \
- str(node.id) + ' [shape=record,label="{ ' + \
- slot_string(node.max_out, for_input = True) + \
- node.label + \
- slot_string(node.max_in, for_input = False) + \
- ' }"]\n'
- )
+ if isinstance(n, torch.autograd.Variable):
+ out.write(
+ ' ' + \
+ str(node.id) + ' [shape=note,label="' + \
+ node.label + ' ' + re.search('torch\.Size\((.*)\)', str(n.data.size())).group(1) + \
+ '"]\n'
+ )
+ else:
+ out.write(
+ ' ' + \
+ str(node.id) + ' [shape=record,label="{ ' + \
+ slot_string(node.max_out, for_input = True) + \
+ node.label + \
+ slot_string(node.max_in, for_input = False) + \
+ ' }"]\n'
+ )
for n in link_list:
out.write(' ' + \
def save_dot(x, node_labels = {}, out = sys.stdout):
node_list, link_list = {}, []
- build_ag_graph_lists(x, node_labels, node_list, link_list)
+ fill_graph_lists(x, node_labels, node_list, link_list)
print_dot(node_list, link_list, out)
######################################################################
# Contact <francois.fleuret@idiap.ch> for comments & bug reports #
#########################################################################
+import subprocess
+
from torch import nn
from torch.nn import functional as fn
from torch import Tensor
loss = criterion(output, target)
agtree2dot.save_dot(loss,
- { input: 'input', target: 'target', loss: 'loss' },
+ {
+ input: 'input',
+ target: 'target',
+ loss: 'loss',
+ mlp.fc1.weight: 'weight1',
+ mlp.fc1.bias: 'bias1',
+ mlp.fc2.weight: 'weight2',
+ mlp.fc2.bias: 'bias2',
+ },
open('./mlp.dot', 'w'))
-print('Generated mlp.dot. You can convert it to pdf with')
-print('> dot mlp.dot -Lg -T pdf -o mlp.pdf')
+print('Generated mlp.dot')
+
+try:
+ subprocess.check_call(["dot", "mlp.dot", "-Lg", "-T", "pdf", "-o", "mlp.pdf" ])
+except subprocess.CalledProcessError:
+ print('Calling the dot command failed. Is Graphviz installed?')
+ sys.exit(1)
+
+print('Generated mlp.pdf')