--- /dev/null
+#!/usr/bin/env python
+
+# Any copyright is dedicated to the Public Domain.
+# https://creativecommons.org/publicdomain/zero/1.0/
+
+# Written by Francois Fleuret <francois@fleuret.org>
+
+from torch import is_tensor
+
+import sys
+
+def exception_hook(exc_type, exc_value, tb):
+
+ tb = tb.tb_next
+
+ while tb:
+ #x=tb.tb_frame.f_code
+ # for field in dir(x):
+ # print(f'@@@ {field} {getattr(x, field)}')
+
+ filename = tb.tb_frame.f_code.co_filename
+ name = tb.tb_frame.f_code.co_name
+ line_no = tb.tb_lineno
+ print(f' File "{filename}", line {line_no}, in {name}')
+ print(open(filename, 'r').readlines()[line_no-1], end='')
+
+ local_vars = tb.tb_frame.f_locals
+
+ for n,v in local_vars.items():
+ if is_tensor(v):
+ print(f' {n} -> {v.size()}:{v.dtype}:{v.device}')
+ else:
+ print(f' {n} -> {v}')
+
+ tb = tb.tb_next
+
+ print(f'{exc_type.__name__}: {exc_value}')
+
+sys.excepthook = exception_hook
+
+######################################################################
+
+if __name__ == '__main__':
+
+ import torch
+
+ def dummy(a,b):
+ print(a@b)
+
+ def blah(a,b):
+ c=b+b
+ dummy(a,c)
+
+ m=torch.randn(2,3)
+ x=torch.randn(3)
+ blah(m,x)
+ blah(x,m)
+