Update.
authorFrançois Fleuret <francois@fleuret.org>
Mon, 24 Jul 2023 21:15:54 +0000 (11:15 -1000)
committerFrançois Fleuret <francois@fleuret.org>
Mon, 24 Jul 2023 21:15:54 +0000 (11:15 -1000)
main.py
problems.py

diff --git a/main.py b/main.py
index b9b52d6..af94979 100755 (executable)
--- a/main.py
+++ b/main.py
@@ -542,34 +542,37 @@ token_probas = token_count / token_count.sum()
 entropy = -torch.xlogy(token_probas, token_probas).sum()
 train_set_perplexity = math.exp(entropy)
 
-##############################
-
+######################################################################
 # A bit of paranoia never hurts
 
-train_examples = {}
 
+def subsets_as_tuples(batches, cs):
+    s = set()
+    for batch in batches:
+        for x in batch:
+            s.add(tuple([v.item() for v in x]))
+            if len(s) == cs:
+                yield s
+                s = set()
+    yield s
 
-for input in task.batches(split="train"):
-    assert input.dim() == 2 and input.dtype == torch.int64
-    for x in input:
-        train_examples[x.sum().item()] = x
-
-nb_total, nb_collisions = 0, 0
-for input in task.batches(split="test"):
-    assert input.dim() == 2 and input.dtype == torch.int64
-    for x in input:
-        nb_total += 1
-        y = train_examples.get(x.sum().item())
-        if y is not None:
-            if x.size() == y.size() and (x - y).abs().sum() == 0:
-                nb_collisions += 1
-
-del train_examples
+
+nb_test, nb_in_train = 0, 0
+for test_subset in subsets_as_tuples(task.batches(split="test"), 25000):
+    in_train = set()
+    for train_subset in subsets_as_tuples(task.batches(split="train"), 25000):
+        in_train.update(test_subset.intersection(train_subset))
+    nb_in_train += len(in_train)
+    nb_test += len(test_subset)
 
 log_string(
-    f"data_check {nb_collisions*100/nb_total:.02f}% ({nb_collisions}/{nb_total}) of test samples are in the train set"
+    f"data_check {nb_in_train*100/nb_test:.02f}% ({nb_in_train}/{nb_test}) of test samples are in the train set"
 )
 
+assert (
+    nb_in_train <= nb_test // 100
+), "More than 1% of test samples are in the train set"
+
 ##############################
 
 if args.learning_rate_schedule == "cos":
index 1f4098a..dca201f 100755 (executable)
@@ -22,7 +22,7 @@ class Problem:
 
 
 class ProblemLenId(Problem):
-    def __init__(self, nb_sentences=100, len_max=5):
+    def __init__(self, len_max=10):
         self.len_max = len_max
 
     def generate_sequences(self, nb):
@@ -38,15 +38,14 @@ class ProblemLenId(Problem):
             + (k > a) * (k < b) * i[1]
             + (k == b) * 11
             + (k > b) * (k < c) * i[1]
-            + (k == c) * 12
-            + (k > c) * 13
+            + (k >= c) * 12
         )
         ar_mask = (sequences == 11).long()
         ar_mask = (ar_mask.cumsum(1) - ar_mask).clamp(max=1)
         return sequences, ar_mask
 
     def seq2str(self, seq):
-        return "".join("0123456789|>.?"[x.item()] for x in seq)
+        return "".join("0123456789|>_"[x.item()] for x in seq)
 
 
 ####################