parser.add_argument("--seed", type=int, default=0)
-parser.add_argument("--nb_epochs", type=int, default=25)
+parser.add_argument("--nb_epochs", type=int, default=None)
parser.add_argument("--batch_size", type=int, default=None)
parser.add_argument("--snake_width", type=int, default=8)
-parser.add_argument("--snake_nb_colors", type=int, default=3)
+parser.add_argument("--snake_nb_colors", type=int, default=5)
parser.add_argument("--snake_length", type=int, default=400)
default_args = {
"picoclvr": {
+ "nb_epochs": 25,
"batch_size": 25,
},
"mnist": {
+ "nb_epochs": 25,
"batch_size": 10,
},
"maze": {
+ "nb_epochs": 25,
"batch_size": 25,
},
"snake": {
+ "nb_epochs": 25,
"batch_size": 20,
},
}
######################################################################
-def generate_snake_sequences(
- nb, height, width, nb_colors, length, prompt_length, device=torch.device("cpu")
-):
- worlds = torch.randint(nb_colors, (nb, height, width), device=device)
- nb_prior_visits = torch.zeros(nb, height, width, device=device)
-
- # nb x 2
- snake_position = torch.cat(
- (
- torch.randint(height, (nb, 1), device=device),
- torch.randint(width, (nb, 1), device=device),
- ),
- 1,
- )
- snake_direction = torch.randint(4, (nb,), device=device)
- sequences = torch.empty(nb, 2 * length, device=device, dtype=torch.int64)
- sequences_prior_visits = torch.zeros(
- nb, 2 * length, device=device, dtype=torch.int64
- )
- i = torch.arange(nb, device=device) # [:,None]
-
- for l in range(length):
- # nb x 3
- snake_next_direction = torch.cat(
- (
- (snake_direction[:, None] - 1) % 4,
- snake_direction[:, None],
- (snake_direction[:, None] + 1) % 4,
- ),
- 1,
- )
-
- # nb x 3
- vh = (snake_next_direction + 1) % 2 * (snake_next_direction - 1)
- vw = snake_next_direction % 2 * (snake_next_direction - 2)
-
- # nb x 3 x 2
- snake_next_speed = torch.cat((vh[:, :, None], vw[:, :, None]), 2)
- snake_next_position = snake_position[:, None, :] + snake_next_speed
-
- # nb x 3
- val = torch.logical_and(
- torch.logical_and(
- snake_next_position[:, :, 0] >= 0, snake_next_position[:, :, 0] < height
- ),
- torch.logical_and(
- snake_next_position[:, :, 1] >= 0, snake_next_position[:, :, 1] < width
- ),
- ).float()
- val = (
- # The multiplicative factors bias toward moving forward
- torch.rand_like(val)
- * val
- * torch.tensor([[1.0, 2.0, 1.0]], device=device)
- )
-
- # nb
- j = val.argmax(1)
- snake_direction = snake_next_direction[i, j]
-
- sequences[:, 2 * l] = worlds[i, snake_position[:, 0], snake_position[:, 1]] + 4
- sequences_prior_visits[:, 2 * l] = nb_prior_visits[
- i, snake_position[:, 0], snake_position[:, 1]
- ]
- if l < prompt_length:
- nb_prior_visits[i, snake_position[:, 0], snake_position[:, 1]] += 1
- sequences[:, 2 * l + 1] = snake_direction
-
- # nb x 2
- snake_position = snake_next_position[i, j]
-
- return sequences, sequences_prior_visits
-
-
-# generate_snake_sequences(nb=1, height=4, width=6, nb_colors=3, length=20)
-# exit(0)
-
-
-def snake_solver(input, ar_mask):
- for n in range(input.size(0)):
- i, j, memory = 0, 0, {}
- # print(input[n])
- # print(ar_mask[n])
- for l in range(input.size(1) // 2):
- if ar_mask[n, 2 * l] == 1:
- if memory.get((i, j)) is None:
- input[n, 2 * l] = -1
- else:
- input[n, 2 * l] = memory[(i, j)]
- else:
- # print(f'@3 {memory=}')
- if memory.get((i, j)) is None:
- memory[(i, j)] = input[n, 2 * l]
- else:
- assert memory[(i, j)] == input[n, 2 * l], f"n={n} l={l}"
- # print(f'@1 {i=} {j=}')
- d = input[n, 2 * l + 1].item()
- i += (d + 1) % 2 * (d - 1)
- j += d % 2 * (d - 2)
- # print(f'@2 {i=} {j=}')
+import snake
class TaskSnake(Task):
self.device = device
self.prompt_length = prompt_length
- self.train_input, self.train_prior_visits = generate_snake_sequences(
+ self.train_input, self.train_prior_visits = snake.generate_sequences(
nb_train_samples,
height,
width,
prompt_length,
self.device,
)
- self.test_input, self.test_prior_visits = generate_snake_sequences(
+ self.test_input, self.test_prior_visits = snake.generate_sequences(
nb_test_samples,
height,
width,
)
result *= 1 - ar_mask
- # snake_solver(result,ar_mask)
+ # snake.solver(result,ar_mask)
masked_inplace_autoregression(
model, self.batch_size, result, ar_mask, device=self.device
--- /dev/null
+#!/usr/bin/env python
+
+# Any copyright is dedicated to the Public Domain.
+# https://creativecommons.org/publicdomain/zero/1.0/
+
+# Written by Francois Fleuret <francois@fleuret.org>
+
+import torch, torchvision
+import torch.nn.functional as F
+
+
+def generate_sequences(
+ nb, height, width, nb_colors, length, prompt_length, device=torch.device("cpu")
+):
+ worlds = torch.randint(nb_colors, (nb, height, width), device=device)
+ nb_prior_visits = torch.zeros(nb, height, width, device=device)
+
+ # nb x 2
+ snake_position = torch.cat(
+ (
+ torch.randint(height, (nb, 1), device=device),
+ torch.randint(width, (nb, 1), device=device),
+ ),
+ 1,
+ )
+ snake_direction = torch.randint(4, (nb,), device=device)
+ sequences = torch.empty(nb, 2 * length, device=device, dtype=torch.int64)
+ sequences_prior_visits = torch.zeros(
+ nb, 2 * length, device=device, dtype=torch.int64
+ )
+ i = torch.arange(nb, device=device) # [:,None]
+
+ for l in range(length):
+ # nb x 3
+ snake_next_direction = torch.cat(
+ (
+ (snake_direction[:, None] - 1) % 4,
+ snake_direction[:, None],
+ (snake_direction[:, None] + 1) % 4,
+ ),
+ 1,
+ )
+
+ # nb x 3
+ vh = (snake_next_direction + 1) % 2 * (snake_next_direction - 1)
+ vw = snake_next_direction % 2 * (snake_next_direction - 2)
+
+ # nb x 3 x 2
+ snake_next_speed = torch.cat((vh[:, :, None], vw[:, :, None]), 2)
+ snake_next_position = snake_position[:, None, :] + snake_next_speed
+
+ # nb x 3
+ val = torch.logical_and(
+ torch.logical_and(
+ snake_next_position[:, :, 0] >= 0, snake_next_position[:, :, 0] < height
+ ),
+ torch.logical_and(
+ snake_next_position[:, :, 1] >= 0, snake_next_position[:, :, 1] < width
+ ),
+ ).float()
+ val = (
+ # The multiplicative factors bias toward moving forward
+ torch.rand_like(val)
+ * val
+ * torch.tensor([[1.0, 2.0, 1.0]], device=device)
+ )
+
+ # nb
+ j = val.argmax(1)
+ snake_direction = snake_next_direction[i, j]
+
+ sequences[:, 2 * l] = worlds[i, snake_position[:, 0], snake_position[:, 1]] + 4
+ sequences_prior_visits[:, 2 * l] = nb_prior_visits[
+ i, snake_position[:, 0], snake_position[:, 1]
+ ]
+ if l < prompt_length:
+ nb_prior_visits[i, snake_position[:, 0], snake_position[:, 1]] += 1
+ sequences[:, 2 * l + 1] = snake_direction
+
+ # nb x 2
+ snake_position = snake_next_position[i, j]
+
+ return sequences, sequences_prior_visits
+
+
+# generate_snake_sequences(nb=1, height=4, width=6, nb_colors=3, length=20)
+# exit(0)
+
+
+def solver(input, ar_mask):
+ for n in range(input.size(0)):
+ i, j, memory = 0, 0, {}
+ # print(input[n])
+ # print(ar_mask[n])
+ for l in range(input.size(1) // 2):
+ if ar_mask[n, 2 * l] == 1:
+ if memory.get((i, j)) is None:
+ input[n, 2 * l] = -1
+ else:
+ input[n, 2 * l] = memory[(i, j)]
+ else:
+ # print(f'@3 {memory=}')
+ if memory.get((i, j)) is None:
+ memory[(i, j)] = input[n, 2 * l]
+ else:
+ assert memory[(i, j)] == input[n, 2 * l], f"n={n} l={l}"
+ # print(f'@1 {i=} {j=}')
+ d = input[n, 2 * l + 1].item()
+ i += (d + 1) % 2 * (d - 1)
+ j += d % 2 * (d - 2)
+ # print(f'@2 {i=} {j=}')
+
+
+######################################################################
+
+if __name__ == "__main__":
+ for n in range(16):
+ descr = generate(nb=1, height=12, width=16)
+
+ print(nb_properties(descr, height=12, width=16))
+
+ with open(f"picoclvr_example_{n:02d}.txt", "w") as f:
+ for d in descr:
+ f.write(f"{d}\n\n")
+
+ img = descr2img(descr, height=12, width=16)
+ if img.size(0) == 1:
+ img = F.pad(img, (1, 1, 1, 1), value=64)
+
+ torchvision.utils.save_image(
+ img / 255.0,
+ f"picoclvr_example_{n:02d}.png",
+ padding=1,
+ nrow=4,
+ pad_value=0.8,
+ )
+
+ import time
+
+ start_time = time.perf_counter()
+ descr = generate(nb=1000, height=12, width=16)
+ end_time = time.perf_counter()
+ print(f"{len(descr) / (end_time - start_time):.02f} samples per second")
+
+######################################################################