description="Very simple implementation of a VAE for teaching."
)
-parser.add_argument("--nb_epochs", type=int, default=25)
+parser.add_argument("--nb_epochs", type=int, default=100)
-parser.add_argument("--learning_rate", type=float, default=1e-3)
+parser.add_argument("--learning_rate", type=float, default=2e-4)
parser.add_argument("--batch_size", type=int, default=100)
parser.add_argument("--no_dkl", action="store_true")
-# With that option, do not follow the setup of the original VAE paper
-# of forcing the variance of X|Z to 1 during training and to 0 for
-# sampling, but optimize and use the variance.
-
-parser.add_argument("--no_hacks", action="store_true")
-
args = parser.parse_args()
log_file = open(args.log_filename, "w")
def forward(self, z):
output = self.model(z.view(z.size(0), -1, 1, 1))
mu, log_var = output[:, 0:1], output[:, 1:2]
- if not args.no_hacks:
- log_var[...] = 0
+ # log_var.flatten(1)[...]=log_var.flatten(1)[:,:1]
return mu, log_var
mean_q_Z_given_x, log_var_q_Z_given_x = model_q_Z_given_x(x)
z = sample_gaussian(mean_q_Z_given_x, log_var_q_Z_given_x)
mean_p_X_given_z, log_var_p_X_given_z = model_p_X_given_z(z)
-if args.no_hacks:
- x = sample_gaussian(mean_p_X_given_z, log_var_p_X_given_z)
-else:
- x = mean_p_X_given_z
+x = sample_gaussian(mean_p_X_given_z, log_var_p_X_given_z)
save_image(x, "output.png")
# Generate a bunch of images
z = sample_gaussian(mean_p_Z.expand(x.size(0), -1), log_var_p_Z.expand(x.size(0), -1))
mean_p_X_given_z, log_var_p_X_given_z = model_p_X_given_z(z)
-if args.no_hacks:
- x = sample_gaussian(mean_p_X_given_z, log_var_p_X_given_z)
-else:
- x = mean_p_X_given_z
+x = sample_gaussian(mean_p_X_given_z, log_var_p_X_given_z)
save_image(x, "synth.png")
######################################################################