Update.
authorFrançois Fleuret <francois@fleuret.org>
Sat, 6 Jan 2024 11:32:45 +0000 (12:32 +0100)
committerFrançois Fleuret <francois@fleuret.org>
Sat, 6 Jan 2024 11:32:45 +0000 (12:32 +0100)
mygpt.py

index 7cecc22..d1acf22 100755 (executable)
--- a/mygpt.py
+++ b/mygpt.py
@@ -181,7 +181,7 @@ def nsum_shape(X, Y_init):
 class DumbRec(nn.Module):
     def __init__(
         self,
-        dim_in,
+        dim_model,
         dim_qk,
         dim_v,
         nb_heads,
@@ -199,11 +199,11 @@ class DumbRec(nn.Module):
 
         self.k_star = randw(nb_lines, dim_qk)
 
-        self.w_qw = randw(nb_heads, dim_qk, dim_in)
-        self.w_qr = randw(nb_heads, dim_qk, dim_in)
-        # self.w_k = randw(nb_heads, dim_qk, dim_in)
-        self.w_v = randw(nb_heads, dim_v, dim_in)
-        self.w_o = randw(dim_v * nb_heads, dim_in)
+        self.w_qw = randw(nb_heads, dim_qk, dim_model)
+        self.w_qr = randw(nb_heads, dim_qk, dim_model)
+        # self.w_k = randw(nb_heads, dim_qk, dim_model)
+        self.w_v = randw(nb_heads, dim_v, dim_model)
+        self.w_o = randw(dim_v * nb_heads, dim_model)
 
     def reset_inner_loss(self):
         self.acc_attention = 0
@@ -310,7 +310,7 @@ class DumbRec(nn.Module):
 class KVRec(nn.Module):
     def __init__(
         self,
-        dim_in,
+        dim_model,
         dim_qk,
         dim_v,
         nb_heads,
@@ -328,11 +328,11 @@ class KVRec(nn.Module):
 
         self.k_star = randw(nb_lines, dim_qk)
 
-        self.w_qw = randw(nb_heads, dim_qk, dim_in)
-        self.w_qr = randw(nb_heads, dim_qk, dim_in)
-        self.w_k = randw(nb_heads, dim_qk, dim_in)
-        self.w_v = randw(nb_heads, dim_v, dim_in)
-        self.w_o = randw(dim_v * nb_heads, dim_in)
+        self.w_qw = randw(nb_heads, dim_qk, dim_model)
+        self.w_qr = randw(nb_heads, dim_qk, dim_model)
+        self.w_k = randw(nb_heads, dim_qk, dim_model)
+        self.w_v = randw(nb_heads, dim_v, dim_model)
+        self.w_o = randw(dim_v * nb_heads, dim_model)
 
     def reset_inner_loss(self):
         self.acc_attention = 0
@@ -456,7 +456,7 @@ def moving_window(x, dim, win_dim, win_size):
 class Caterpillar(nn.Module):
     def __init__(
         self,
-        dim_in,
+        dim_model,
         dim_qk,
         dim_v,
         nb_heads,
@@ -476,17 +476,17 @@ class Caterpillar(nn.Module):
         self.caterpillar_height = caterpillar_height
         self.attention_dropout = attention_dropout
 
-        self.w_G = randw(nb_heads, caterpillar_height, dim_in)
+        self.w_G = randw(nb_heads, caterpillar_height, dim_model)
         self.b_G = nn.Parameter(
             torch.full(
                 (nb_heads, caterpillar_height), -math.log(caterpillar_height - 1)
             )
         )
 
-        self.w_K = randw(nb_heads, dim_qk, dim_in)
-        self.w_V = randw(nb_heads, dim_v, dim_in)
-        self.w_Q = randw(nb_heads, dim_qk, dim_in)
-        self.w_O = randw(dim_v * nb_heads, dim_in)
+        self.w_K = randw(nb_heads, dim_qk, dim_model)
+        self.w_V = randw(nb_heads, dim_v, dim_model)
+        self.w_Q = randw(nb_heads, dim_qk, dim_model)
+        self.w_O = randw(dim_v * nb_heads, dim_model)
 
         self.init_K_rec = randw(caterpillar_height, caterpillar_length, dim_qk)
         self.init_V_rec = randw(caterpillar_height, caterpillar_length, dim_v)
@@ -622,7 +622,7 @@ class Caterpillar(nn.Module):
 class QKVAttention(nn.Module):
     def __init__(
         self,
-        dim_in,
+        dim_model,
         dim_qk,
         dim_v,
         nb_heads=1,
@@ -638,10 +638,10 @@ class QKVAttention(nn.Module):
         self.attention_dropout = attention_dropout
         self.record_attention = False
 
-        self.w_q = randw(nb_heads, dim_qk, dim_in)
-        self.w_k = randw(nb_heads, dim_qk, dim_in)
-        self.w_v = randw(nb_heads, dim_v, dim_in)
-        self.w_o = randw(dim_v * nb_heads, dim_in)
+        self.w_q = randw(nb_heads, dim_qk, dim_model)
+        self.w_k = randw(nb_heads, dim_qk, dim_model)
+        self.w_v = randw(nb_heads, dim_v, dim_model)
+        self.w_o = randw(dim_v * nb_heads, dim_model)
 
     def forward(self, bs):
         x_q = bs.x
@@ -745,7 +745,7 @@ class MyGPT(nn.Module):
         def attlayer():
             if attention_layer == "mha":
                 return QKVAttention(
-                    dim_in=dim_model,
+                    dim_model=dim_model,
                     dim_qk=dim_keys,
                     dim_v=dim_model // nb_heads,
                     nb_heads=nb_heads,
@@ -754,7 +754,7 @@ class MyGPT(nn.Module):
                 )
             elif attention_layer == "dumbrec":
                 return DumbRec(
-                    dim_in=dim_model,
+                    dim_model=dim_model,
                     dim_qk=dim_keys,
                     dim_v=dim_rec_v,
                     nb_heads=nb_heads,
@@ -763,7 +763,7 @@ class MyGPT(nn.Module):
                 )
             elif attention_layer == "kvrec":
                 return KVRec(
-                    dim_in=dim_model,
+                    dim_model=dim_model,
                     dim_qk=dim_keys,
                     dim_v=dim_rec_v,
                     nb_heads=nb_heads,
@@ -772,7 +772,7 @@ class MyGPT(nn.Module):
                 )
             elif attention_layer == "caterpillar":
                 return Caterpillar(
-                    dim_in=dim_model,
+                    dim_model=dim_model,
                     dim_qk=dim_keys,
                     dim_v=dim_rec_v,
                     nb_heads=nb_heads,
@@ -912,7 +912,7 @@ if __name__ == "__main__":
     print("Basic check.")
 
     m = Caterpillar(
-        dim_in=4,
+        dim_model=4,
         dim_qk=3,
         dim_v=7,
         nb_heads=1,