parser.add_argument("--nb_epochs", type=int, default=100)
-parser.add_argument("--learning_rate", type=float, default=2e-4)
+parser.add_argument("--learning_rate", type=float, default=1e-4)
parser.add_argument("--batch_size", type=int, default=100)
parser.add_argument("--latent_dim", type=int, default=32)
-parser.add_argument("--nb_channels", type=int, default=128)
+parser.add_argument("--nb_channels", type=int, default=64)
parser.add_argument("--no_dkl", action="store_true")
+parser.add_argument("--beta", type=float, default=1.0)
+
args = parser.parse_args()
log_file = open(args.log_filename, "w")
######################################################################
+
+def save_images(model_q_Z_given_x, model_p_X_given_z, prefix=""):
+ def save_image(x, filename):
+ x = x * train_std + train_mu
+ x = x.clamp(min=0, max=255) / 255
+ torchvision.utils.save_image(1 - x, filename, nrow=16, pad_value=0.8)
+ log_string(f"wrote {filename}")
+
+ # Save a bunch of train images
+
+ x = train_input[:256]
+ save_image(x, f"{prefix}train_input.png")
+
+ # Save the same images after encoding / decoding
+
+ param_q_Z_given_x = model_q_Z_given_x(x)
+ z = sample_gaussian(param_q_Z_given_x)
+ param_p_X_given_z = model_p_X_given_z(z)
+ x = sample_gaussian(param_p_X_given_z)
+ save_image(x, f"{prefix}train_output.png")
+ save_image(param_p_X_given_z[0], f"{prefix}train_output_mean.png")
+
+ # Save a bunch of test images
+
+ x = test_input[:256]
+ save_image(x, f"{prefix}input.png")
+
+ # Save the same images after encoding / decoding
+
+ param_q_Z_given_x = model_q_Z_given_x(x)
+ z = sample_gaussian(param_q_Z_given_x)
+ param_p_X_given_z = model_p_X_given_z(z)
+ x = sample_gaussian(param_p_X_given_z)
+ save_image(x, f"{prefix}output.png")
+ save_image(param_p_X_given_z[0], f"{prefix}output_mean.png")
+
+ # Generate a bunch of images
+
+ z = sample_gaussian(
+ (param_p_Z[0].expand(x.size(0), -1), param_p_Z[1].expand(x.size(0), -1))
+ )
+ param_p_X_given_z = model_p_X_given_z(z)
+ x = sample_gaussian(param_p_X_given_z)
+ save_image(x, f"{prefix}synth.png")
+ save_image(param_p_X_given_z[0], f"{prefix}synth_mean.png")
+
+
+######################################################################
+
model_q_Z_given_x = LatentGivenImageNet(
nb_channels=args.nb_channels, latent_dim=args.latent_dim
)
param_p_Z = zeros, zeros
-for epoch in range(args.nb_epochs):
+for n_epoch in range(args.nb_epochs):
acc_loss = 0
for x in train_input.split(args.batch_size):
loss = -(log_p_x_z - log_q_z_given_x).mean()
else:
dkl_q_Z_given_x_from_p_Z = dkl_gaussians(param_q_Z_given_x, param_p_Z)
- loss = (-log_p_x_given_z + dkl_q_Z_given_x_from_p_Z).mean()
+ loss = -(log_p_x_given_z - args.beta * dkl_q_Z_given_x_from_p_Z).mean()
optimizer.zero_grad()
loss.backward()
acc_loss += loss.item() * x.size(0)
- log_string(f"acc_loss {epoch} {acc_loss/train_input.size(0)}")
-
-######################################################################
-
-
-def save_image(x, filename):
- x = x * train_std + train_mu
- x = x.clamp(min=0, max=255) / 255
- torchvision.utils.save_image(1 - x, filename, nrow=16, pad_value=0.8)
+ log_string(f"acc_loss {n_epoch} {acc_loss/train_input.size(0)}")
-
-# Save a bunch of test images
-
-x = test_input[:256]
-save_image(x, "input.png")
-
-# Save the same images after encoding / decoding
-
-param_q_Z_given_x = model_q_Z_given_x(x)
-z = sample_gaussian(param_q_Z_given_x)
-param_p_X_given_z = model_p_X_given_z(z)
-x = sample_gaussian(param_p_X_given_z)
-save_image(x, "output.png")
-save_image(param_p_X_given_z[0], "output_mean.png")
-
-# Generate a bunch of images
-
-z = sample_gaussian(
- (param_p_Z[0].expand(x.size(0), -1), param_p_Z[1].expand(x.size(0), -1))
-)
-param_p_X_given_z = model_p_X_given_z(z)
-x = sample_gaussian(param_p_X_given_z)
-save_image(x, "synth.png")
-save_image(param_p_X_given_z[0], "synth_mean.png")
+ if (n_epoch + 1) % 25 == 0:
+ save_images(model_q_Z_given_x, model_p_X_given_z, f"epoch_{n_epoch+1:04d}_")
######################################################################