--- /dev/null
+#!/usr/bin/env python
+
+# @XREMOTE_HOST: elk.fleuret.org
+# @XREMOTE_EXEC: /home/fleuret/conda/bin/python
+# @XREMOTE_PRE: killall -q -9 python || echo "Nothing killed"
+# @XREMOTE_GET: *.pdf *.log
+
+import torch, math, sys, argparse
+
+from torch import nn
+from torch.nn import functional as F
+
+######################################################################
+
+parser = argparse.ArgumentParser(description='Toy RNN.')
+
+parser.add_argument('--nb_epochs',
+ type = int, default = 250)
+
+parser.add_argument('--with_attention',
+ help = 'Use the model with an attention layer',
+ action='store_true', default=False)
+
+parser.add_argument('--group_by_locations',
+ help = 'Use the task where the grouping is location-based',
+ action='store_true', default=False)
+
+parser.add_argument('--positional_encoding',
+ help = 'Provide a positional encoding',
+ action='store_true', default=False)
+
+args = parser.parse_args()
+
+######################################################################
+
+label=''
+
+if args.with_attention: label = 'wa_'
+
+if args.group_by_locations: label += 'lg_'
+
+if args.positional_encoding: label += 'pe_'
+
+log_file = open(f'att1d_{label}train.log', 'w')
+
+######################################################################
+
+def log_string(s):
+ if log_file is not None:
+ log_file.write(s + '\n')
+ log_file.flush()
+ print(s)
+ sys.stdout.flush()
+
+######################################################################
+
+if torch.cuda.is_available():
+ device = torch.device('cuda')
+ torch.backends.cudnn.benchmark = True
+else:
+ device = torch.device('cpu')
+
+torch.manual_seed(1)
+
+######################################################################
+
+seq_height_min, seq_height_max = 1.0, 25.0
+seq_width_min, seq_width_max = 5.0, 11.0
+seq_length = 100
+
+def positions_to_sequences(tr = None, bx = None, noise_level = 0.3):
+ st = torch.arange(seq_length).float()
+ st = st[None, :, None]
+ tr = tr[:, None, :, :]
+ bx = bx[:, None, :, :]
+
+ xtr = torch.relu(tr[..., 1] - torch.relu(torch.abs(st - tr[..., 0]) - 0.5) * 2 * tr[..., 1] / tr[..., 2])
+ xbx = torch.sign(torch.relu(bx[..., 1] - torch.abs((st - bx[..., 0]) * 2 * bx[..., 1] / bx[..., 2]))) * bx[..., 1]
+
+ x = torch.cat((xtr, xbx), 2)
+
+ # u = x.sign()
+ u = F.max_pool1d(x.sign().permute(0, 2, 1), kernel_size = 2, stride = 1).permute(0, 2, 1)
+
+ collisions = (u.sum(2) > 1).max(1).values
+ y = x.max(2).values
+
+ return y + torch.rand_like(y) * noise_level - noise_level / 2, collisions
+
+######################################################################
+
+def generate_sequences(nb):
+
+ # Position / height / width
+
+ tr = torch.empty(nb, 2, 3)
+ tr[:, :, 0].uniform_(seq_width_max/2, seq_length - seq_width_max/2)
+ tr[:, :, 1].uniform_(seq_height_min, seq_height_max)
+ tr[:, :, 2].uniform_(seq_width_min, seq_width_max)
+
+ bx = torch.empty(nb, 2, 3)
+ bx[:, :, 0].uniform_(seq_width_max/2, seq_length - seq_width_max/2)
+ bx[:, :, 1].uniform_(seq_height_min, seq_height_max)
+ bx[:, :, 2].uniform_(seq_width_min, seq_width_max)
+
+ if args.group_by_locations:
+ a = torch.cat((tr, bx), 1)
+ v = a[:, :, 0].sort(1).values[:, 2:3]
+ mask_left = (a[:, :, 0] < v).float()
+ h_left = (a[:, :, 1] * mask_left).sum(1) / 2
+ h_right = (a[:, :, 1] * (1 - mask_left)).sum(1) / 2
+ valid = (h_left - h_right).abs() > 4
+ else:
+ valid = (torch.abs(tr[:, 0, 1] - tr[:, 1, 1]) > 4) & (torch.abs(tr[:, 0, 1] - tr[:, 1, 1]) > 4)
+
+ input, collisions = positions_to_sequences(tr, bx)
+
+ if args.group_by_locations:
+ a = torch.cat((tr, bx), 1)
+ v = a[:, :, 0].sort(1).values[:, 2:3]
+ mask_left = (a[:, :, 0] < v).float()
+ h_left = (a[:, :, 1] * mask_left).sum(1, keepdim = True) / 2
+ h_right = (a[:, :, 1] * (1 - mask_left)).sum(1, keepdim = True) / 2
+ a[:, :, 1] = mask_left * h_left + (1 - mask_left) * h_right
+ tr, bx = a.split(2, 1)
+ else:
+ tr[:, :, 1:2] = tr[:, :, 1:2].mean(1, keepdim = True)
+ bx[:, :, 1:2] = bx[:, :, 1:2].mean(1, keepdim = True)
+
+ targets, _ = positions_to_sequences(tr, bx)
+
+ valid = valid & ~collisions
+ tr = tr[valid]
+ bx = bx[valid]
+ input = input[valid][:, None, :]
+ targets = targets[valid][:, None, :]
+
+ if input.size(0) < nb:
+ input2, targets2, tr2, bx2 = generate_sequences(nb - input.size(0))
+ input = torch.cat((input, input2), 0)
+ targets = torch.cat((targets, targets2), 0)
+ tr = torch.cat((tr, tr2), 0)
+ bx = torch.cat((bx, bx2), 0)
+
+ return input, targets, tr, bx
+
+######################################################################
+
+import matplotlib.pyplot as plt
+import matplotlib.collections as mc
+
+def save_sequence_images(filename, sequences, tr = None, bx = None):
+ fig = plt.figure()
+ ax = fig.add_subplot(1, 1, 1)
+
+ ax.set_xlim(0, seq_length)
+ ax.set_ylim(-1, seq_height_max + 4)
+
+ for u in sequences:
+ ax.plot(
+ torch.arange(u[0].size(0)) + 0.5, u[0], color = u[1], label = u[2]
+ )
+
+ ax.legend(frameon = False, loc = 'upper left')
+
+ delta = -1.
+ if tr is not None:
+ ax.scatter(test_tr[k, :, 0], torch.full((test_tr.size(1),), delta), color = 'black', marker = '^', clip_on=False)
+
+ if bx is not None:
+ ax.scatter(test_bx[k, :, 0], torch.full((test_bx.size(1),), delta), color = 'black', marker = 's', clip_on=False)
+
+ fig.savefig(filename, bbox_inches='tight')
+
+ plt.close('all')
+
+######################################################################
+
+class AttentionLayer(nn.Module):
+ def __init__(self, in_channels, out_channels, key_channels):
+ super(AttentionLayer, self).__init__()
+ self.conv_Q = nn.Conv1d(in_channels, key_channels, kernel_size = 1, bias = False)
+ self.conv_K = nn.Conv1d(in_channels, key_channels, kernel_size = 1, bias = False)
+ self.conv_V = nn.Conv1d(in_channels, out_channels, kernel_size = 1, bias = False)
+
+ def forward(self, x):
+ Q = self.conv_Q(x)
+ K = self.conv_K(x)
+ V = self.conv_V(x)
+ A = Q.permute(0, 2, 1).matmul(K).softmax(2)
+ x = A.matmul(V.permute(0, 2, 1)).permute(0, 2, 1)
+ return x
+
+ def __repr__(self):
+ return self._get_name() + \
+ '(in_channels={}, out_channels={}, key_channels={})'.format(
+ self.conv_Q.in_channels,
+ self.conv_V.out_channels,
+ self.conv_K.out_channels
+ )
+
+ def attention(self, x):
+ Q = self.conv_Q(x)
+ K = self.conv_K(x)
+ return Q.permute(0, 2, 1).matmul(K).softmax(2)
+
+######################################################################
+
+train_input, train_targets, train_tr, train_bx = generate_sequences(25000)
+test_input, test_targets, test_tr, test_bx = generate_sequences(1000)
+
+######################################################################
+
+ks = 5
+nc = 64
+
+if args.positional_encoding:
+ c = math.ceil(math.log(seq_length) / math.log(2.0))
+ positional_input = (torch.arange(seq_length).unsqueeze(0) // 2**torch.arange(c).unsqueeze(1))%2
+ positional_input = positional_input.unsqueeze(0).float()
+else:
+ positional_input = torch.zeros(1, 0, seq_length)
+
+in_channels = 1 + positional_input.size(1)
+
+if args.with_attention:
+
+ model = nn.Sequential(
+ nn.Conv1d(in_channels, nc, kernel_size = ks, padding = ks//2),
+ nn.ReLU(),
+ nn.Conv1d(nc, nc, kernel_size = ks, padding = ks//2),
+ nn.ReLU(),
+ AttentionLayer(nc, nc, nc),
+ nn.Conv1d(nc, nc, kernel_size = ks, padding = ks//2),
+ nn.ReLU(),
+ nn.Conv1d(nc, 1, kernel_size = ks, padding = ks//2)
+ )
+
+else:
+
+ model = nn.Sequential(
+ nn.Conv1d(in_channels, nc, kernel_size = ks, padding = ks//2),
+ nn.ReLU(),
+ nn.Conv1d(nc, nc, kernel_size = ks, padding = ks//2),
+ nn.ReLU(),
+ nn.Conv1d(nc, nc, kernel_size = ks, padding = ks//2),
+ nn.ReLU(),
+ nn.Conv1d(nc, nc, kernel_size = ks, padding = ks//2),
+ nn.ReLU(),
+ nn.Conv1d(nc, 1, kernel_size = ks, padding = ks//2)
+ )
+
+nb_parameters = sum(p.numel() for p in model.parameters())
+
+with open(f'att1d_{label}model.log', 'w') as f:
+ f.write(str(model) + '\n\n')
+ f.write(f'nb_parameters {nb_parameters}\n')
+
+######################################################################
+
+batch_size = 100
+
+optimizer = torch.optim.Adam(model.parameters(), lr = 1e-3)
+mse_loss = nn.MSELoss()
+
+model.to(device)
+mse_loss.to(device)
+train_input, train_targets = train_input.to(device), train_targets.to(device)
+test_input, test_targets = test_input.to(device), test_targets.to(device)
+positional_input = positional_input.to(device)
+
+mu, std = train_input.mean(), train_input.std()
+
+for e in range(args.nb_epochs):
+ acc_loss = 0.0
+
+ for input, targets in zip(train_input.split(batch_size),
+ train_targets.split(batch_size)):
+
+ input = torch.cat((input, positional_input.expand(input.size(0), -1, -1)), 1)
+
+ output = model((input - mu) / std)
+ loss = mse_loss(output, targets)
+
+ optimizer.zero_grad()
+ loss.backward()
+ optimizer.step()
+
+ acc_loss += loss.item()
+
+ log_string(f'{e+1} {acc_loss}')
+
+######################################################################
+
+train_input = train_input.detach().to('cpu')
+train_targets = train_targets.detach().to('cpu')
+
+for k in range(15):
+ save_sequence_images(
+ f'att1d_{label}train_{k:03d}.pdf',
+ [
+ ( train_input[k, 0], 'blue', 'Input' ),
+ ( train_targets[k, 0], 'red', 'Target' ),
+ ],
+ )
+
+####################
+
+test_input = torch.cat((test_input, positional_input.expand(test_input.size(0), -1, -1)), 1)
+test_outputs = model((test_input - mu) / std).detach()
+
+if args.with_attention:
+ x = model[0:4]((test_input - mu) / std)
+ test_A = model[4].attention(x)
+ test_A = test_A.detach().to('cpu')
+
+test_input = test_input.detach().to('cpu')
+test_outputs = test_outputs.detach().to('cpu')
+test_targets = test_targets.detach().to('cpu')
+
+for k in range(15):
+ save_sequence_images(
+ f'att1d_{label}test_Y_{k:03d}.pdf',
+ [
+ ( test_input[k, 0], 'blue', 'Input' ),
+ ( test_outputs[k, 0], 'orange', 'Output' ),
+ ]
+ )
+
+ save_sequence_images(
+ f'att1d_{label}test_Yp_{k:03d}.pdf',
+ [
+ ( test_input[k, 0], 'blue', 'Input' ),
+ ( test_outputs[k, 0], 'orange', 'Output' ),
+ ],
+ test_tr[k],
+ test_bx[k]
+ )
+
+ if args.with_attention:
+ fig = plt.figure()
+ ax = fig.add_subplot(1, 1, 1)
+ ax.set_xlim(0, seq_length)
+ ax.set_ylim(0, seq_length)
+
+ ax.imshow(test_A[k], cmap = 'binary', interpolation='nearest')
+ delta = 0.
+ ax.scatter(test_bx[k, :, 0], torch.full((test_bx.size(1),), delta), color = 'black', marker = 's', clip_on=False)
+ ax.scatter(torch.full((test_bx.size(1),), delta), test_bx[k, :, 0], color = 'black', marker = 's', clip_on=False)
+ ax.scatter(test_tr[k, :, 0], torch.full((test_tr.size(1),), delta), color = 'black', marker = '^', clip_on=False)
+ ax.scatter(torch.full((test_tr.size(1),), delta), test_tr[k, :, 0], color = 'black', marker = '^', clip_on=False)
+
+ fig.savefig(f'att1d_{label}test_A_{k:03d}.pdf', bbox_inches='tight')
+
+ plt.close('all')
+
+######################################################################