from torch.nn import functional as fn
from torchvision import datasets, transforms, utils
-import svrt
+from vignette_set import VignetteSet, CompressedVignetteSet
######################################################################
######################################################################
-class VignetteSet:
- def __init__(self, problem_number, nb_batches):
- self.batch_size = args.batch_size
- self.problem_number = problem_number
- self.nb_batches = nb_batches
- self.nb_samples = self.nb_batches * self.batch_size
- self.targets = []
- self.inputs = []
-
- acc = 0.0
- acc_sq = 0.0
-
- for b in range(0, self.nb_batches):
- target = torch.LongTensor(self.batch_size).bernoulli_(0.5)
- input = svrt.generate_vignettes(problem_number, target)
- input = input.float().view(input.size(0), 1, input.size(1), input.size(2))
- if torch.cuda.is_available():
- input = input.cuda()
- target = target.cuda()
- acc += input.sum() / input.numel()
- acc_sq += input.pow(2).sum() / input.numel()
- self.targets.append(target)
- self.inputs.append(input)
-
- mean = acc / self.nb_batches
- std = math.sqrt(acc_sq / self.nb_batches - mean * mean)
- for b in range(0, self.nb_batches):
- self.inputs[b].sub_(mean).div_(std)
-
- def get_batch(self, b):
- return self.inputs[b], self.targets[b]
-
-######################################################################
-
-class CompressedVignetteSet:
- def __init__(self, problem_number, nb_batches):
- self.batch_size = args.batch_size
- self.problem_number = problem_number
- self.nb_batches = nb_batches
- self.nb_samples = self.nb_batches * self.batch_size
- self.targets = []
- self.input_storages = []
-
- acc = 0.0
- acc_sq = 0.0
- for b in range(0, self.nb_batches):
- target = torch.LongTensor(self.batch_size).bernoulli_(0.5)
- input = svrt.generate_vignettes(problem_number, target)
- acc += input.float().sum() / input.numel()
- acc_sq += input.float().pow(2).sum() / input.numel()
- self.targets.append(target)
- self.input_storages.append(svrt.compress(input.storage()))
-
- self.mean = acc / self.nb_batches
- self.std = math.sqrt(acc_sq / self.nb_batches - self.mean * self.mean)
-
- def get_batch(self, b):
- input = torch.ByteTensor(svrt.uncompress(self.input_storages[b])).float()
- input = input.view(self.batch_size, 1, 128, 128).sub_(self.mean).div_(self.std)
- target = self.targets[b]
-
- if torch.cuda.is_available():
- input = input.cuda()
- target = target.cuda()
-
- return input, target
-
-######################################################################
-
# Afroze's ShallowNet
# map size nb. maps
for problem_number in range(1, 24):
if args.compress_vignettes:
- train_set = CompressedVignetteSet(problem_number, args.nb_train_batches)
- test_set = CompressedVignetteSet(problem_number, args.nb_test_batches)
+ train_set = CompressedVignetteSet(problem_number, args.nb_train_batches, args.batch_size)
+ test_set = CompressedVignetteSet(problem_number, args.nb_test_batches, args.batch_size)
else:
- train_set = VignetteSet(problem_number, args.nb_train_batches)
- test_set = VignetteSet(problem_number, args.nb_test_batches)
+ train_set = VignetteSet(problem_number, args.nb_train_batches, args.batch_size)
+ test_set = VignetteSet(problem_number, args.nb_test_batches, args.batch_size)
model = AfrozeShallowNet()
--- /dev/null
+
+# svrt is the ``Synthetic Visual Reasoning Test'', an image
+# generator for evaluating classification performance of machine
+# learning systems, humans and primates.
+#
+# Copyright (c) 2017 Idiap Research Institute, http://www.idiap.ch/
+# Written by Francois Fleuret <francois.fleuret@idiap.ch>
+#
+# This file is part of svrt.
+#
+# svrt is free software: you can redistribute it and/or modify it
+# under the terms of the GNU General Public License version 3 as
+# published by the Free Software Foundation.
+#
+# svrt is distributed in the hope that it will be useful, but
+# WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+# General Public License for more details.
+#
+# You should have received a copy of the GNU General Public License
+# along with selector. If not, see <http://www.gnu.org/licenses/>.
+
+import torch
+from math import sqrt
+
+from torch import Tensor
+from torch.autograd import Variable
+
+import svrt
+
+######################################################################
+
+class VignetteSet:
+ def __init__(self, problem_number, nb_batches, batch_size):
+ self.batch_size = batch_size
+ self.problem_number = problem_number
+ self.nb_batches = nb_batches
+ self.nb_samples = self.nb_batches * self.batch_size
+ self.targets = []
+ self.inputs = []
+
+ acc = 0.0
+ acc_sq = 0.0
+
+ for b in range(0, self.nb_batches):
+ target = torch.LongTensor(self.batch_size).bernoulli_(0.5)
+ input = svrt.generate_vignettes(problem_number, target)
+ input = input.float().view(input.size(0), 1, input.size(1), input.size(2))
+ if torch.cuda.is_available():
+ input = input.cuda()
+ target = target.cuda()
+ acc += input.sum() / input.numel()
+ acc_sq += input.pow(2).sum() / input.numel()
+ self.targets.append(target)
+ self.inputs.append(input)
+
+ mean = acc / self.nb_batches
+ std = sqrt(acc_sq / self.nb_batches - mean * mean)
+ for b in range(0, self.nb_batches):
+ self.inputs[b].sub_(mean).div_(std)
+
+ def get_batch(self, b):
+ return self.inputs[b], self.targets[b]
+
+######################################################################
+
+class CompressedVignetteSet:
+ def __init__(self, problem_number, nb_batches, batch_size):
+ self.batch_size = batch_size
+ self.problem_number = problem_number
+ self.nb_batches = nb_batches
+ self.nb_samples = self.nb_batches * self.batch_size
+ self.targets = []
+ self.input_storages = []
+
+ acc = 0.0
+ acc_sq = 0.0
+ for b in range(0, self.nb_batches):
+ target = torch.LongTensor(self.batch_size).bernoulli_(0.5)
+ input = svrt.generate_vignettes(problem_number, target)
+ acc += input.float().sum() / input.numel()
+ acc_sq += input.float().pow(2).sum() / input.numel()
+ self.targets.append(target)
+ self.input_storages.append(svrt.compress(input.storage()))
+
+ self.mean = acc / self.nb_batches
+ self.std = math.sqrt(acc_sq / self.nb_batches - self.mean * self.mean)
+
+ def get_batch(self, b):
+ input = torch.ByteTensor(svrt.uncompress(self.input_storages[b])).float()
+ input = input.view(self.batch_size, 1, 128, 128).sub_(self.mean).div_(self.std)
+ target = self.targets[b]
+
+ if torch.cuda.is_available():
+ input = input.cuda()
+ target = target.cuda()
+
+ return input, target
+
+######################################################################