for problem_number in range(1, 24):
+ log_string('**** problem ' + str(problem_number) + ' ****')
+
model = AfrozeShallowNet()
if torch.cuda.is_available():
train_set = CompressedVignetteSet(problem_number,
args.nb_train_batches, args.batch_size,
cuda=torch.cuda.is_available())
- test_set = CompressedVignetteSet(problem_number,
- args.nb_test_batches, args.batch_size,
- cuda=torch.cuda.is_available())
else:
train_set = VignetteSet(problem_number,
args.nb_train_batches, args.batch_size,
cuda=torch.cuda.is_available())
- test_set = VignetteSet(problem_number,
- args.nb_test_batches, args.batch_size,
- cuda=torch.cuda.is_available())
log_string('data_generation {:0.2f} samples / s'.format(
(train_set.nb_samples + test_set.nb_samples) / (time.time() - t))
train_set.nb_samples)
)
- nb_test_errors = nb_errors(model, test_set)
+ if args.compress_vignettes:
+ test_set = CompressedVignetteSet(problem_number,
+ args.nb_test_batches, args.batch_size,
+ cuda=torch.cuda.is_available())
+ else:
+ test_set = VignetteSet(problem_number,
+ args.nb_test_batches, args.batch_size,
+ cuda=torch.cuda.is_available())
+
+ nb_test_errors = nb_errors(model, test_set)
+
+ log_string('test_error {:d} {:.02f}% {:d} {:d}'.format(
+ problem_number,
+ 100 * nb_test_errors / test_set.nb_samples,
+ nb_test_errors,
+ test_set.nb_samples)
+ )
- log_string('test_error {:d} {:.02f}% {:d} {:d}'.format(
- problem_number,
- 100 * nb_test_errors / test_set.nb_samples,
- nb_test_errors,
- test_set.nb_samples)
- )
######################################################################