import torchvision
from torchvision import datasets
-from _ext import mylib
+######################################################################
+
+def sequences_to_image(x):
+ from PIL import Image
+
+ nb_sequences = x.size(0)
+ nb_images_per_sequences = x.size(1)
+ nb_channels = 3
+
+ if x.size(2) != nb_channels:
+ print('Can only handle 3 channel tensors.')
+ exit(1)
+
+ height = x.size(3)
+ width = x.size(4)
+ gap = 1
+ gap_color = (0, 128, 255)
-x = torch.ByteTensor(4, 5).fill_(0)
+ result = torch.ByteTensor(nb_channels,
+ gap + nb_sequences * (height + gap),
+ gap + nb_images_per_sequences * (width + gap))
-print(x.size())
+ result[0].fill_(gap_color[0])
+ result[1].fill_(gap_color[1])
+ result[2].fill_(gap_color[2])
-mylib.generate_sequence(8, x)
+ for s in range(0, nb_sequences):
+ for i in range(0, nb_images_per_sequences):
+ result.narrow(1, gap + s * (height + gap), height).narrow(2, gap + i * (width + gap), width).copy_(x[s][i])
+
+ result_numpy = result.cpu().byte().transpose(0, 2).transpose(0, 1).numpy()
+
+ return Image.fromarray(result_numpy, 'RGB')
+
+######################################################################
+
+from _ext import mylib
-print(x.size())
+x = torch.ByteTensor()
-x = x.float().sub_(128).div_(128)
+mylib.generate_sequence(10, x)
-for s in range(0, x.size(0)):
- torchvision.utils.save_image(x[s], 'example_' + str(s) + '.png')
+sequences_to_image(x).save('sequences.png')