local nameOrig = name .. '__orig'
- if model[name] and not model[nameOrig] then
- model[nameOrig] = model[name]
- model[name] = function(self, ...)
+ -- We decorate the class and not the object, otherwise we cannot
+ -- save models anymore.
+
+ if rawget(model, name) then
+ error('We decorate the class, not the objects, and there is a ' .. name .. ' in ' .. model)
+ end
+
+ local toDecorate = getmetatable(model)
+
+ if toDecorate[name] and not toDecorate[nameOrig] then
+ toDecorate[nameOrig] = toDecorate[name]
+ toDecorate[name] = function(self, ...)
local startTime = sys.clock()
local result = { self[nameOrig](self, unpack({...})) }
local endTime = sys.clock()
end
-function profiler.print(model, nbSamples, indent)
+function profiler.print(model, nbSamples, totalTime, indent)
local indent = indent or ''
print(string.format('%s* %s', indent, model.__typename))
for l, t in pairs(model.accTime) do
- local s
+ local s = string.format('%s %s %.02fs', indent, l, t)
+ if totalTime then
+ s = s .. string.format(' [%.02f%%]', 100 * t / totalTime)
+ end
if nbSamples then
- s = string.format(' (%.01fmus/sample)', 1e6 * t / nbSamples)
- else
- s = ''
+ s = s .. string.format(' (%.01fmus/sample)', 1e6 * t / nbSamples)
end
- print(string.format('%s %s %.02fs%s', indent, l, t, s))
+ print(s)
end
+ print()
+
if torch.isTypeOf(model, nn.Container) then
for _, m in ipairs(model.modules) do
- profiler.print(m, nbSamples, indent .. ' ')
+ profiler.print(m, nbSamples, totalTime, indent .. ' ')
end
end
end
-- Create a model
+local w, h, fs = 50, 50, 3
+local nhu = (w - fs + 1) * (h - fs + 1)
+
local model = nn.Sequential()
:add(nn.Sequential()
- :add(nn.Linear(1000, 1000))
+ :add(nn.SpatialConvolution(1, 1, fs, fs))
+ :add(nn.Reshape(nhu))
+ :add(nn.Linear(nhu, 1000))
:add(nn.ReLU())
)
:add(nn.Linear(1000, 100))
-- Create the data and criterion
-local input = torch.Tensor(1000, 1000)
+local input = torch.Tensor(1000, 1, h, w)
local target = torch.Tensor(input:size(1), 100)
local criterion = nn.MSECriterion()
-- Print the accumulated timings
-profiler.print(model, nbSamples)
+profiler.print(model, nbSamples, modelTime)
-- profiler.print(model)
print()