action='store_true', default = False,
help = 'Use lossless compression to reduce the memory footprint')
+parser.add_argument('--deep_model',
+ action='store_true', default = False,
+ help = 'Use Afroze\'s Alexnet-like deep model')
+
parser.add_argument('--test_loaded_models',
action='store_true', default = False,
help = 'Should we compute the test errors of loaded models')
print(Fore.RED + 'Logging into ' + args.log_file + Style.RESET_ALL)
-def log_string(s):
+# Log and prints the string, with a time stamp. Does not log the
+# remark
+def log_string(s, remark = ''):
global pred_log_t
t = time.time()
pred_log_t = t
- s = Fore.BLUE + time.ctime() + ' ' + Fore.GREEN + elapsed + Style.RESET_ALL + ' ' + s
+ s = Fore.BLUE + '[' + time.ctime() + '] ' + Fore.GREEN + elapsed + Style.RESET_ALL + ' ' + s
log_file.write(s + '\n')
log_file.flush()
- print(s)
+ print(s + Fore.CYAN + remark + Style.RESET_ALL)
######################################################################
######################################################################
+# Afroze's DeepNet
+
+# map size nb. maps
+# ----------------------
+# input 128x128 1
+# -- conv(21x21 x 32 stride=4) -> 28x28 32
+# -- max(2x2) -> 14x14 6
+# -- conv(7x7 x 96) -> 8x8 16
+# -- max(2x2) -> 4x4 16
+# -- conv(5x5 x 96) -> 26x36 16
+# -- conv(3x3 x 128) -> 36x36 16
+# -- conv(3x3 x 128) -> 36x36 16
+
+# -- conv(5x5 x 120) -> 1x1 120
+# -- reshape -> 120 1
+# -- full(3x84) -> 84 1
+# -- full(84x2) -> 2 1
+
+class AfrozeDeepNet(nn.Module):
+ def __init__(self):
+ super(AfrozeDeepNet, self).__init__()
+ self.conv1 = nn.Conv2d( 1, 32, kernel_size=7, stride=4, padding=3)
+ self.conv2 = nn.Conv2d( 32, 96, kernel_size=5, padding=2)
+ self.conv3 = nn.Conv2d( 96, 128, kernel_size=3, padding=1)
+ self.conv4 = nn.Conv2d(128, 128, kernel_size=3, padding=1)
+ self.conv5 = nn.Conv2d(128, 96, kernel_size=3, padding=1)
+ self.fc1 = nn.Linear(1536, 256)
+ self.fc2 = nn.Linear(256, 256)
+ self.fc3 = nn.Linear(256, 2)
+ self.name = 'deepnet'
+
+ def forward(self, x):
+ x = self.conv1(x)
+ x = fn.max_pool2d(x, kernel_size=2)
+ x = fn.relu(x)
+
+ x = self.conv2(x)
+ x = fn.max_pool2d(x, kernel_size=2)
+ x = fn.relu(x)
+
+ x = self.conv3(x)
+ x = fn.relu(x)
+
+ x = self.conv4(x)
+ x = fn.relu(x)
+
+ x = self.conv5(x)
+ x = fn.max_pool2d(x, kernel_size=2)
+ x = fn.relu(x)
+
+ x = x.view(-1, 1536)
+
+ x = self.fc1(x)
+ x = fn.relu(x)
+
+ x = self.fc2(x)
+ x = fn.relu(x)
+
+ x = self.fc3(x)
+
+ return x
+
+######################################################################
+
def train_model(model, train_set):
batch_size = args.batch_size
criterion = nn.CrossEntropyLoss()
model.zero_grad()
loss.backward()
optimizer.step()
- log_string('train_loss {:d} {:f}'.format(e + 1, acc_loss))
dt = (time.time() - start_t) / (e + 1)
- print(Fore.CYAN + 'ETA ' + time.ctime(time.time() + dt * (args.nb_epochs - e)) + Style.RESET_ALL)
+ log_string('train_loss {:d} {:f}'.format(e + 1, acc_loss),
+ ' [ETA ' + time.ctime(time.time() + dt * (args.nb_epochs - e)) + ']')
return model
log_string('**** problem ' + str(problem_number) + ' ****')
- model = AfrozeShallowNet()
+ if args.deep_model:
+ model = AfrozeDeepNet()
+ else:
+ model = AfrozeShallowNet()
if torch.cuda.is_available():
model.cuda()