######################################################################
def generate(nb, height = 6, width = 8,
- max_nb_squares = 5, max_nb_statements = 10,
+ max_nb_squares = 5, max_nb_properties = 10,
many_colors = False):
nb_colors = len(color_tokens) - 1 if many_colors else max_nb_squares
img = [ 0 ] * height * width
for k in range(nb_squares): img[square_position[k]] = square_c[k]
- # generates all the true relations
+ # generates all the true properties
s = all_properties(height, width, nb_squares, square_i, square_j, square_c)
- # pick at most max_nb_statements at random
+ # pick at most max_nb_properties at random
- nb_statements = torch.randint(max_nb_statements, (1,)) + 1
- s = ' <sep> '.join([ s[k] for k in torch.randperm(len(s))[:nb_statements] ] )
+ nb_properties = torch.randint(max_nb_properties, (1,)) + 1
+ s = ' <sep> '.join([ s[k] for k in torch.randperm(len(s))[:nb_properties] ] )
s += ' <img> ' + ' '.join([ f'{color_names[n]}' for n in img ])
descr += [ s ]
def descr2img(descr, height = 6, width = 8):
+ if type(descr) == list:
+ return torch.cat([ descr2img(d) for d in descr ], 0)
+
def token2color(t):
try:
return color_tokens[t]
except KeyError:
return [ 128, 128, 128 ]
- def img_descr(x):
- u = x.split('<img>', 1)
- return u[1] if len(u) > 1 else ''
-
- img = torch.full((len(descr), 3, height, width), 255)
- d = [ img_descr(x) for x in descr ]
- d = [ u.strip().split(' ')[:height * width] for u in d ]
- d = [ u + [ '<unk>' ] * (height * width - len(u)) for u in d ]
- d = [ [ token2color(t) for t in u ] for u in d ]
- img = torch.tensor(d).permute(0, 2, 1)
- img = img.reshape(img.size(0), 3, height, width)
+ d = descr.split('<img>', 1)
+ d = d[-1] if len(d) > 1 else ''
+ d = d.strip().split(' ')[:height * width]
+ d = d + [ '<unk>' ] * (height * width - len(d))
+ d = [ token2color(t) for t in d ]
+ img = torch.tensor(d).permute(1, 0)
+ img = img.reshape(1, 3, height, width)
return img