if bs.init_cache:
self.rec_V = X.new_zeros(N, CH, T, DV)
- self.rec_V[:, :, t0 - CL : t0] = self.init_V_rec[None, :, :, :]
self.rec_K = X.new_zeros(N, CH, T, DK)
+ # We start the recurrent sequences with optimizable
+ # initial values. No idea if it helps.
+ self.rec_V[:, :, t0 - CL : t0] = self.init_V_rec[None, :, :, :]
self.rec_K[:, :, t0 - CL : t0] = self.init_K_rec[None, :, :, :]
+
self.cache_Y = X.new_zeros(N, T, Dout)
######################################################################
# Compute the recurrent state
+ # This is the Gating sequence that modulates if they key and
+ # values should be stored in one of the CH pairs of the
+ # current stack. The CH gating values are independent, which
+ # means that the same thing could be stored multiple times or
+ # not at all
+
G = (
torch.einsum("ntc,hec->nhet", X, self.w_G) + self.b_G[None, :, :, None]
).sigmoid()
V = torch.einsum("ntc,hdc->nhtd", X, self.w_V)
K = torch.einsum("ntc,hdc->nhtd", X, self.w_K)
+ # We prepare the arguments for the parallel scan
+
A = 1 - G.sum(1)
gated_V = torch.einsum("nhet,nhtd->netd", G, V)
gated_K = torch.einsum("nhet,nhtd->netd", G, K)
init_rec_V = self.rec_V[:, :, t0 - CL : t0]
init_rec_K = self.rec_K[:, :, t0 - CL : t0]
+ # Here there is a trick: The parallel scan operates with a
+ # period of L, so we split the sequence indexing in two axes,
+ # the second of size CL, and run the parallel scan using the
+ # other alone as the sequence index.
+
A = A.unflatten(2, (-1, CL))
gated_V = gated_V.unflatten(2, (-1, CL))
gated_K = gated_K.unflatten(2, (-1, CL))
next_V = pscan_dim(A, gated_V, init_rec_V, dim=2)
next_K = pscan_dim(A, gated_K, init_rec_K, dim=2)
+ # Put back the sequence index
+
self.rec_V[:, :, t0:t1] = next_V.flatten(2, 3)
self.rec_K[:, :, t0:t1] = next_K.flatten(2, 3)
Q = torch.einsum("ntc,hdc->nhtd", X, self.w_Q)
- uv = moving_window(
+ # We build tensors NxHxTxFxL where N is the sample index, H
+ # the head, T the time, F the row in the caterpillar, and L
+ # the column in the caterpillar
+
+ windowed_V = moving_window(
self.rec_V[:, :, t0 - CL + 1 : t1], dim=2, win_dim=3, win_size=CL
)
- uk = moving_window(
+ windowed_K = moving_window(
self.rec_K[:, :, t0 - CL + 1 : t1], dim=2, win_dim=3, win_size=CL
)
+ # We have an attention score for each of the CHxCL value
+
ar = torch.einsum(
"nhtd,nftld->nhtfl",
Q,
- uk,
+ windowed_K,
) / math.sqrt(DK)
+ # softmax can operate only on one dimension, hence the
+ # flattening
+
ar = ar.flatten(3).softmax(dim=3).view(ar.size())
ar = F.dropout(ar, self.attention_dropout, self.training)
+ # Compute the output for each head, flatten to concatenate
+
Y = torch.einsum(
"nhtfl,nftld->nthd",
ar,
- uv,
+ windowed_V,
).flatten(2)
+ # Compute the final output
+
self.cache_Y[:, t0:t1] = Y @ self.w_O
return BracketedSequence(self.cache_Y, t0, t1 - t0, bs.init_cache)