parser.add_argument("--snake_nb_colors", type=int, default=3)
-parser.add_argument("--snake_length", type=int, default=100)
+parser.add_argument("--snake_length", type=int, default=400)
######################################################################
masked_inplace_autoregression(
model, self.batch_size, results, ar_mask, device=self.device
)
- image_name = os.path.join(args.result_dir, f"result_mnist_{n_epoch:04d}.png")
+ image_name = os.path.join(args.result_dir, f"mnist_result_{n_epoch:04d}.png")
torchvision.utils.save_image(
1 - results.reshape(-1, 1, 28, 28) / 255.0,
image_name,
mazes, paths = self.seq2map(input)
_, predicted_paths = self.seq2map(result)
- filename = os.path.join(args.result_dir, f"result_{n_epoch:04d}.png")
+ filename = os.path.join(args.result_dir, f"maze_result_{n_epoch:04d}.png")
maze.save_image(
filename,
mazes=mazes,
)
snake_direction = torch.randint(4, (nb,), device=device)
sequences = torch.empty(nb, 2 * length, device=device, dtype=torch.int64)
- count = torch.arange(nb, device=device) # [:,None]
+ i = torch.arange(nb, device=device) # [:,None]
for l in range(length):
# nb x 3
)
# nb
- i = torch.arange(val.size(0), device=device)
j = val.argmax(1)
snake_direction = snake_next_direction[i, j]
- sequences[:, 2 * l] = worlds[count, snake_position[:, 0], snake_position[:, 1]]
+ sequences[:, 2 * l] = worlds[i, snake_position[:, 0], snake_position[:, 1]] + 4
sequences[:, 2 * l + 1] = snake_direction
# nb x 2
return sequences, worlds
- # print(snake_position)
-
# generate_snake_sequences(nb=1, height=4, width=6, nb_colors=3, length=20)
# exit(0)
def vocabulary_size(self):
return self.nb_codes
+ def produce_results(self, n_epoch, model):
+ with torch.autograd.no_grad():
+ t = model.training
+ model.eval()
+
+ def compute_nb_correct(input):
+ result = input.clone()
+ i = torch.arange(result.size(1), device=result.device)
+ ar_mask = torch.logical_and(i >= i.size(0) // 2, i % 2 == 0)[
+ None, :
+ ].long()
+ result *= 1 - ar_mask
+ masked_inplace_autoregression(
+ model, self.batch_size, result, ar_mask, device=self.device
+ )
+
+ nb_total = ar_mask.sum() * input.size(0)
+ nb_correct = ((result == input).long() * ar_mask).sum()
+
+ # nb_total = result.size(0)
+ # nb_correct = ((result - input).abs().sum(1) == 0).sum()
+
+ return nb_total, nb_correct
+
+ train_nb_total, train_nb_correct = compute_nb_correct(self.train_input)
+
+ log_string(
+ f"accuracy_train nb_total {train_nb_total} nb_correct {train_nb_correct} accuracy {(100.0*train_nb_correct)/train_nb_total:.02f}%"
+ )
+
+ test_nb_total, test_nb_correct = compute_nb_correct(self.test_input)
+
+ log_string(
+ f"accuracy_test nb_total {test_nb_total} nb_correct {test_nb_correct} accuracy {(100.0*test_nb_correct)/test_nb_total:.02f}%"
+ )
+
+ model.train(t)
+
######################################################################