parser.add_argument("--maze_nb_walls", type=int, default=15)
+##############################
+# Snake options
+
+parser.add_argument("--snake_height", type=int, default=6)
+
+parser.add_argument("--snake_width", type=int, default=8)
+
+parser.add_argument("--snake_nb_colors", type=int, default=3)
+
+parser.add_argument("--snake_length", type=int, default=100)
+
######################################################################
args = parser.parse_args()
def generate_snake_sequences(
nb, height, width, nb_colors, length, device=torch.device("cpu")
):
- world = torch.randint(nb_colors, (nb, height, width), device=device)
+ worlds = torch.randint(nb_colors, (nb, height, width), device=device)
# nb x 2
snake_position = torch.cat(
(
),
1,
)
- snake_direction = torch.randint(4, (nb, 1), device=device)
- result = torch.empty(nb, 2*length, device=device, dtype=torch.int64)
+ snake_direction = torch.randint(4, (nb,), device=device)
+ sequences = torch.empty(nb, 2 * length, device=device, dtype=torch.int64)
count = torch.arange(nb, device=device) # [:,None]
for l in range(length):
# nb x 3
snake_next_direction = torch.cat(
(
- (snake_direction - 1) % 4,
- snake_direction,
- (snake_direction + 1) % 4,
+ (snake_direction[:, None] - 1) % 4,
+ snake_direction[:, None],
+ (snake_direction[:, None] + 1) % 4,
),
1,
)
snake_next_position[:, :, 1] >= 0, snake_next_position[:, :, 1] < width
),
).float()
- val = torch.rand_like(val) * val * torch.tensor([[1.,4.,1.]], device=device)
+ val = (
+ torch.rand_like(val) * val * torch.tensor([[1.0, 4.0, 1.0]], device=device)
+ )
# nb
i = torch.arange(val.size(0), device=device)
j = val.argmax(1)
+ snake_direction = snake_next_direction[i, j]
- # nb x 1
- snake_direction = snake_next_direction[i[:, None], j[:, None]]
-
- result[:, 2*l] = world[count, snake_position[:, 0], snake_position[:, 1]]
- result[:, 2*l+1] = snake_direction[:,0]
+ sequences[:, 2 * l] = worlds[count, snake_position[:, 0], snake_position[:, 1]]
+ sequences[:, 2 * l + 1] = snake_direction
# nb x 2
- snake_position = snake_next_position[i[:, None], j[:, None]].squeeze(1)
+ snake_position = snake_next_position[i, j]
+
+ return sequences, worlds
- return result
+ # print(snake_position)
+
+
+# generate_snake_sequences(nb=1, height=4, width=6, nb_colors=3, length=20)
+# exit(0)
-generate_snake_sequences(nb=2, height=4, width=5, nb_colors=3, length=10)
-exit(0)
class TaskSnake(Task):
def __init__(
self.width = width
self.device = device
- self.train_input = generate_snake_sequences(
+ self.train_input, self.train_worlds = generate_snake_sequences(
nb_train_samples, height, width, nb_colors, length, self.device
)
- self.test_input = generate_snake_sequences(
+ self.test_input, self.test_worlds = generate_snake_sequences(
nb_test_samples, height, width, nb_colors, length, self.device
)
nb_train_samples=args.nb_train_samples,
nb_test_samples=args.nb_test_samples,
batch_size=args.batch_size,
- height=6,
- width=8,
- nb_colors=5,
- length=100,
+ height=args.snake_height,
+ width=args.snake_width,
+ nb_colors=args.snake_nb_colors,
+ length=args.snake_length,
device=device,
)