Update.
authorFrançois Fleuret <francois@fleuret.org>
Mon, 10 Jul 2023 07:10:36 +0000 (09:10 +0200)
committerFrançois Fleuret <francois@fleuret.org>
Mon, 10 Jul 2023 07:10:36 +0000 (09:10 +0200)
expr.py
main.py
tasks.py

diff --git a/expr.py b/expr.py
index f294d68..847cd36 100755 (executable)
--- a/expr.py
+++ b/expr.py
@@ -16,56 +16,46 @@ def random_var(nb_variables=None, variables=None):
         return l[torch.randint(len(l), (1,)).item()]
 
 
-def random_expr(variables, budget):
+def random_expr(variables, operand_max, budget):
     if budget <= 5:
         op = torch.randint(2, (1,)).item()
         if op == 0 and len(variables) > 0:
             return random_var(variables=variables)
         else:
-            return str(torch.randint(10, (1,)).item())
+            return str(torch.randint(operand_max + 1, (1,)).item())
     else:
         op = torch.randint(3, (1,)).item()
         if op == 0:
-            e = random_expr(variables, budget - 2)
+            e = random_expr(variables, operand_max, budget - 2)
             if ("+" in e or "-" in e or "*" in e) and (e[0] != "(" or e[-1] != ")"):
                 return "(" + e + ")"
             else:
                 return e
         else:
             b = 2 + torch.randint(budget - 5, (1,)).item()
-            e1 = random_expr(variables, b)
-            e2 = random_expr(variables, budget - b - 1)
+            e1 = random_expr(variables, operand_max, b)
+            e2 = random_expr(variables, operand_max, budget - b - 1)
             if op == 1:
                 return e1 + "+" + e2
             elif op == 2:
                 return e1 + "*" + e2
 
 
-def generate_program(nb_variables, length):
+def generate_program(nb_variables, operand_max, length):
     s = ""
     variables = set()
 
     while len(s) < length:
         v = random_var(nb_variables=nb_variables)
-        s += v + "=" + random_expr(variables, budget=20) + ";"
+        s += v + "=" + random_expr(variables, operand_max, budget=20) + ";"
         variables.add(v)
 
     return s, variables
 
 
-def extract_results(seq):
-    f = lambda a: (a[0], -1 if a[1] == "" else int(a[1]))
-    results = [
-        dict([f(tuple(x.split(":"))) for x in re.findall("[A-Z]:[0-9]*", s)])
-        for s in seq
-    ]
-    return results
-
-
-def generate_sequences(nb, nb_variables=5, length=20):
+def generate_sequences(nb, nb_variables=5, length=20, operand_max=9, result_max=99):
     assert nb_variables <= 26
     sequences = []
-    result_max = 99
 
     for n in range(nb):
         # We take length itself half of the time, and uniform between
@@ -75,7 +65,7 @@ def generate_sequences(nb, nb_variables=5, length=20):
         l = min(length, 1 + torch.randint(length * 2, (1,)).item())
         result = None
         while result == None or max(result.values()) > result_max:
-            p, v = generate_program(nb_variables, l)
+            p, v = generate_program(nb_variables, operand_max, l)
             v = ", ".join(['"' + v + '": ' + v for v in v])
             ldict = {}
             exec(p + "result={" + v + "}", globals(), ldict)
@@ -88,6 +78,15 @@ def generate_sequences(nb, nb_variables=5, length=20):
     return sequences
 
 
+def extract_results(seq):
+    f = lambda a: (a[0], -1 if a[1] == "" else int(a[1]))
+    results = [
+        dict([f(tuple(x.split(":"))) for x in re.findall("[A-Z]:[0-9]*", s)])
+        for s in seq
+    ]
+    return results
+
+
 if __name__ == "__main__":
     import time
 
diff --git a/main.py b/main.py
index abed321..80f2733 100755 (executable)
--- a/main.py
+++ b/main.py
@@ -127,6 +127,10 @@ parser.add_argument("--expr_nb_variables", type=int, default=5)
 
 parser.add_argument("--expr_sequence_length", type=int, default=40)
 
+parser.add_argument("--expr_operand_max", type=int, default=9)
+
+parser.add_argument("--expr_result_max", type=int, default=99)
+
 parser.add_argument("--expr_input_file", type=str, default=None)
 
 ######################################################################
@@ -307,6 +311,8 @@ elif args.task == "expr":
         nb_test_samples=args.nb_test_samples,
         nb_variables=args.expr_nb_variables,
         sequence_length=args.expr_sequence_length,
+        operand_max=args.expr_operand_max,
+        result_max=args.expr_result_max,
         batch_size=args.batch_size,
         device=device,
     )
index 4d7e90e..82d965b 100755 (executable)
--- a/tasks.py
+++ b/tasks.py
@@ -30,10 +30,19 @@ def masked_inplace_autoregression(
             total=input.size(0) // batch_size,
         )
 
-    for input, ar_mask in batches:
-        model.masked_inplace_autoregression(
-            input, ar_mask, forbidden_tokens, deterministic_synthesis
-        )
+    with torch.autograd.no_grad():
+        t = model.training
+        model.eval()
+
+        for input, ar_mask in batches:
+            model.masked_inplace_autoregression(
+                input, ar_mask, forbidden_tokens, deterministic_synthesis
+            )
+
+        model.train(t)
+
+
+######################################################################
 
 
 class Task:
@@ -447,70 +456,64 @@ class Maze(Task):
     def produce_results(
         self, n_epoch, model, result_dir, logger, deterministic_synthesis
     ):
-        with torch.autograd.no_grad():
-            t = model.training
-            model.eval()
-
-            train_nb_total, train_nb_correct, count = self.compute_error(
-                model,
-                "train",
-                nb_to_use=1000,
-                deterministic_synthesis=deterministic_synthesis,
-            )
-            logger(
-                f"accuracy_train {n_epoch} nb_total {train_nb_total} nb_correct {train_nb_correct} accuracy {(100.0*train_nb_correct)/train_nb_total:.02f}%"
-            )
-
-            test_nb_total, test_nb_correct, count = self.compute_error(
-                model,
-                "test",
-                nb_to_use=1000,
-                deterministic_synthesis=deterministic_synthesis,
-            )
-            logger(
-                f"accuracy_test {n_epoch} nb_total {test_nb_total} nb_correct {test_nb_correct} accuracy {(100.0*test_nb_correct)/test_nb_total:.02f}%"
-            )
+        train_nb_total, train_nb_correct, count = self.compute_error(
+            model,
+            "train",
+            nb_to_use=1000,
+            deterministic_synthesis=deterministic_synthesis,
+        )
+        logger(
+            f"accuracy_train {n_epoch} nb_total {train_nb_total} nb_correct {train_nb_correct} accuracy {(100.0*train_nb_correct)/train_nb_total:.02f}%"
+        )
 
-            if count is not None:
-                proportion_optimal = count.diagonal().sum().float() / count.sum()
-                logger(f"proportion_optimal_test {proportion_optimal*100:.02f}%")
-                with open(
-                    os.path.join(result_dir, f"maze_result_{n_epoch:04d}.txt"), "w"
-                ) as f:
-                    for i in range(count.size(0)):
-                        for j in range(count.size(1)):
-                            eol = " " if j < count.size(1) - 1 else "\n"
-                            f.write(f"{count[i,j]}{eol}")
-
-            input = self.test_input[:48]
-            result = input.clone()
-            ar_mask = result.new_zeros(result.size())
-            ar_mask[:, self.height * self.width :] = 1
-            result *= 1 - ar_mask
-            masked_inplace_autoregression(
-                model,
-                self.batch_size,
-                result,
-                ar_mask,
-                deterministic_synthesis,
-                device=self.device,
-            )
+        test_nb_total, test_nb_correct, count = self.compute_error(
+            model,
+            "test",
+            nb_to_use=1000,
+            deterministic_synthesis=deterministic_synthesis,
+        )
+        logger(
+            f"accuracy_test {n_epoch} nb_total {test_nb_total} nb_correct {test_nb_correct} accuracy {(100.0*test_nb_correct)/test_nb_total:.02f}%"
+        )
 
-            mazes, paths = self.seq2map(input)
-            _, predicted_paths = self.seq2map(result)
-
-            filename = os.path.join(result_dir, f"maze_result_{n_epoch:04d}.png")
-            maze.save_image(
-                filename,
-                mazes=mazes,
-                target_paths=paths,
-                predicted_paths=predicted_paths,
-                path_correct=maze.path_correctness(mazes, predicted_paths),
-                path_optimal=maze.path_optimality(paths, predicted_paths),
-            )
-            logger(f"wrote {filename}")
+        if count is not None:
+            proportion_optimal = count.diagonal().sum().float() / count.sum()
+            logger(f"proportion_optimal_test {proportion_optimal*100:.02f}%")
+            with open(
+                os.path.join(result_dir, f"maze_result_{n_epoch:04d}.txt"), "w"
+            ) as f:
+                for i in range(count.size(0)):
+                    for j in range(count.size(1)):
+                        eol = " " if j < count.size(1) - 1 else "\n"
+                        f.write(f"{count[i,j]}{eol}")
+
+        input = self.test_input[:48]
+        result = input.clone()
+        ar_mask = result.new_zeros(result.size())
+        ar_mask[:, self.height * self.width :] = 1
+        result *= 1 - ar_mask
+        masked_inplace_autoregression(
+            model,
+            self.batch_size,
+            result,
+            ar_mask,
+            deterministic_synthesis,
+            device=self.device,
+        )
 
-            model.train(t)
+        mazes, paths = self.seq2map(input)
+        _, predicted_paths = self.seq2map(result)
+
+        filename = os.path.join(result_dir, f"maze_result_{n_epoch:04d}.png")
+        maze.save_image(
+            filename,
+            mazes=mazes,
+            target_paths=paths,
+            predicted_paths=predicted_paths,
+            path_correct=maze.path_correctness(mazes, predicted_paths),
+            path_optimal=maze.path_optimality(paths, predicted_paths),
+        )
+        logger(f"wrote {filename}")
 
 
 ######################################################################
@@ -577,59 +580,51 @@ class Snake(Task):
     def produce_results(
         self, n_epoch, model, result_dir, logger, deterministic_synthesis
     ):
-        with torch.autograd.no_grad():
-            t = model.training
-            model.eval()
-
-            def compute_nb_correct(input, prior_visits):
-                result = input.clone()
-                i = torch.arange(result.size(1), device=result.device)[None, :]
-                ar_mask = (
-                    torch.logical_and(i >= self.prompt_length * 2, i % 2 == 0)
-                    .long()
-                    .expand_as(result)
-                )
-                result *= 1 - ar_mask
-
-                # snake.solver(result,ar_mask)
+        def compute_nb_correct(input, prior_visits):
+            result = input.clone()
+            i = torch.arange(result.size(1), device=result.device)[None, :]
+            ar_mask = (
+                torch.logical_and(i >= self.prompt_length * 2, i % 2 == 0)
+                .long()
+                .expand_as(result)
+            )
+            result *= 1 - ar_mask
 
-                masked_inplace_autoregression(
-                    model,
-                    self.batch_size,
-                    result,
-                    ar_mask,
-                    deterministic_synthesis,
-                    device=self.device,
-                )
+            # snake.solver(result,ar_mask)
 
-                nb_total = ((prior_visits > 0) * ar_mask).sum()
+            masked_inplace_autoregression(
+                model,
+                self.batch_size,
+                result,
+                ar_mask,
+                deterministic_synthesis,
+                device=self.device,
+            )
 
-                nb_correct = (
-                    (result == input).long() * (prior_visits > 0) * ar_mask
-                ).sum()
+            nb_total = ((prior_visits > 0) * ar_mask).sum()
 
-                # nb_total = result.size(0)
-                # nb_correct = ((result - input).abs().sum(1) == 0).sum()
+            nb_correct = ((result == input).long() * (prior_visits > 0) * ar_mask).sum()
 
-                return nb_total, nb_correct
+            # nb_total = result.size(0)
+            # nb_correct = ((result - input).abs().sum(1) == 0).sum()
 
-            # train_nb_total, train_nb_correct = compute_nb_correct(
-            # self.train_input, self.train_prior_visits
-            # )
+            return nb_total, nb_correct
 
-            # logger(
-            # f"accuracy_train nb_total {train_nb_total} nb_correct {train_nb_correct} accuracy {(100.0*train_nb_correct)/train_nb_total:.02f}%"
-            # )
+        # train_nb_total, train_nb_correct = compute_nb_correct(
+        # self.train_input, self.train_prior_visits
+        # )
 
-            test_nb_total, test_nb_correct = compute_nb_correct(
-                self.test_input[:1000], self.test_prior_visits[:1000]
-            )
+        # logger(
+        # f"accuracy_train nb_total {train_nb_total} nb_correct {train_nb_correct} accuracy {(100.0*train_nb_correct)/train_nb_total:.02f}%"
+        # )
 
-            logger(
-                f"accuracy_test {n_epoch} nb_total {test_nb_total} nb_correct {test_nb_correct} accuracy {(100.0*test_nb_correct)/test_nb_total:.02f}%"
-            )
+        test_nb_total, test_nb_correct = compute_nb_correct(
+            self.test_input[:1000], self.test_prior_visits[:1000]
+        )
 
-            model.train(t)
+        logger(
+            f"accuracy_test {n_epoch} nb_total {test_nb_total} nb_correct {test_nb_correct} accuracy {(100.0*test_nb_correct)/test_nb_total:.02f}%"
+        )
 
 
 ######################################################################
@@ -709,51 +704,10 @@ class Stack(Task):
     def produce_results(
         self, n_epoch, model, result_dir, logger, deterministic_synthesis
     ):
-        with torch.autograd.no_grad():
-            t = model.training
-            model.eval()
-
-            def compute_nb_correct(input):
-                result = input.clone()
-                stack.remove_popped_values(result, self.nb_stacks, self.nb_digits)
-                ar_mask = (result != input).long()
-                masked_inplace_autoregression(
-                    model,
-                    self.batch_size,
-                    result,
-                    ar_mask,
-                    deterministic_synthesis,
-                    device=self.device,
-                )
-
-                errors = ((result != input).long() * ar_mask).reshape(
-                    -1, 1 + self.nb_digits
-                )
-                ar_mask = ar_mask.reshape(-1, 1 + self.nb_digits)
-
-                nb_total = ar_mask.max(1).values.sum()
-                nb_correct = nb_total - errors.max(1).values.sum()
-
-                return nb_total, nb_correct
-
-            test_nb_total, test_nb_correct = compute_nb_correct(self.test_input[:1000])
-
-            logger(
-                f"accuracy_test {n_epoch} nb_total {test_nb_total} nb_correct {test_nb_correct} accuracy {(100.0*test_nb_correct)/test_nb_total:.02f}%"
-            )
-
-            ##############################################################
-            # Log a few generated sequences
-            input = self.test_input[:10, : 12 * (1 + self.nb_digits)]
+        def compute_nb_correct(input):
             result = input.clone()
             stack.remove_popped_values(result, self.nb_stacks, self.nb_digits)
             ar_mask = (result != input).long()
-
-            # for n in range(result.size(0)):
-            # logger(
-            # f"test_before {stack.seq_to_str(result[n],nb_stacks=self.nb_stacks,nb_digits=self.nb_digits)}"
-            # )
-
             masked_inplace_autoregression(
                 model,
                 self.batch_size,
@@ -763,13 +717,48 @@ class Stack(Task):
                 device=self.device,
             )
 
-            for n in range(result.size(0)):
-                logger(
-                    f"test_after  {stack.seq_to_str(result[n],nb_stacks=self.nb_stacks,nb_digits=self.nb_digits)}"
-                )
-            ##############################################################
+            errors = ((result != input).long() * ar_mask).reshape(
+                -1, 1 + self.nb_digits
+            )
+            ar_mask = ar_mask.reshape(-1, 1 + self.nb_digits)
+
+            nb_total = ar_mask.max(1).values.sum()
+            nb_correct = nb_total - errors.max(1).values.sum()
+
+            return nb_total, nb_correct
+
+        test_nb_total, test_nb_correct = compute_nb_correct(self.test_input[:1000])
+
+        logger(
+            f"accuracy_test {n_epoch} nb_total {test_nb_total} nb_correct {test_nb_correct} accuracy {(100.0*test_nb_correct)/test_nb_total:.02f}%"
+        )
+
+        ##############################################################
+        # Log a few generated sequences
+        input = self.test_input[:10, : 12 * (1 + self.nb_digits)]
+        result = input.clone()
+        stack.remove_popped_values(result, self.nb_stacks, self.nb_digits)
+        ar_mask = (result != input).long()
+
+        # for n in range(result.size(0)):
+        # logger(
+        # f"test_before {stack.seq_to_str(result[n],nb_stacks=self.nb_stacks,nb_digits=self.nb_digits)}"
+        # )
+
+        masked_inplace_autoregression(
+            model,
+            self.batch_size,
+            result,
+            ar_mask,
+            deterministic_synthesis,
+            device=self.device,
+        )
 
-            model.train(t)
+        for n in range(result.size(0)):
+            logger(
+                f"test_after  {stack.seq_to_str(result[n],nb_stacks=self.nb_stacks,nb_digits=self.nb_digits)}"
+            )
+        ##############################################################
 
 
 ######################################################################
@@ -799,6 +788,8 @@ class Expr(Task):
         nb_test_samples,
         nb_variables,
         sequence_length,
+        operand_max,
+        result_max,
         batch_size,
         device=torch.device("cpu"),
     ):
@@ -809,12 +800,16 @@ class Expr(Task):
             nb_train_samples,
             nb_variables=nb_variables,
             length=sequence_length,
+            operand_max=operand_max,
+            result_max=result_max,
         )
 
         test_sequences = expr.generate_sequences(
             nb_test_samples,
             nb_variables=nb_variables,
             length=sequence_length,
+            operand_max=operand_max,
+            result_max=result_max,
         )
 
         symbols = list(set("#" + "".join(train_sequences + test_sequences)))
@@ -859,107 +854,101 @@ class Expr(Task):
         deterministic_synthesis,
         input_file=None,
     ):
-        with torch.autograd.no_grad():
-            t = model.training
-            model.eval()
-
-            def compute_nb_correct(input):
-                result = input.clone()
-                s = (result == self.space).long()
-                ar_mask = (s.cumsum(dim=1) - s).clamp(min=0, max=1)
-                result = (1 - ar_mask) * result + ar_mask * self.filler
-                masked_inplace_autoregression(
-                    model,
-                    self.batch_size,
-                    result,
-                    ar_mask,
-                    deterministic_synthesis,
-                    device=self.device,
-                )
+        def compute_nb_correct(input):
+            result = input.clone()
+            s = (result == self.space).long()
+            ar_mask = (s.cumsum(dim=1) - s).clamp(min=0, max=1)
+            result = (1 - ar_mask) * result + ar_mask * self.filler
+            masked_inplace_autoregression(
+                model,
+                self.batch_size,
+                result,
+                ar_mask,
+                deterministic_synthesis,
+                device=self.device,
+            )
 
-                nb_total = input.size(0)
-                nb_correct = (input == result).long().min(1).values.sum()
+            nb_total = input.size(0)
+            nb_correct = (input == result).long().min(1).values.sum()
 
-                #######################################################################
-                # Comput predicted vs. true variable values
+            #######################################################################
+            # Comput predicted vs. true variable values
 
-                nb_delta = torch.zeros(5, dtype=torch.int64)
-                nb_missed = 0
+            nb_delta = torch.zeros(5, dtype=torch.int64)
+            nb_missed = 0
 
-                values_input = expr.extract_results([self.seq2str(s) for s in input])
-                values_result = expr.extract_results([self.seq2str(s) for s in result])
+            values_input = expr.extract_results([self.seq2str(s) for s in input])
+            values_result = expr.extract_results([self.seq2str(s) for s in result])
 
-                for i, r in zip(values_input, values_result):
-                    for n, vi in i.items():
-                        vr = r.get(n)
-                        if vr is None or vr < 0:
+            for i, r in zip(values_input, values_result):
+                for n, vi in i.items():
+                    vr = r.get(n)
+                    if vr is None or vr < 0:
+                        nb_missed += 1
+                    else:
+                        d = abs(vr - vi)
+                        if d >= nb_delta.size(0):
                             nb_missed += 1
                         else:
-                            d = abs(vr - vi)
-                            if d >= nb_delta.size(0):
-                                nb_missed += 1
-                            else:
-                                nb_delta[d] += 1
+                            nb_delta[d] += 1
 
-                ######################################################################
+            ######################################################################
 
-                return nb_total, nb_correct, nb_delta, nb_missed
+            return nb_total, nb_correct, nb_delta, nb_missed
 
-            (
-                test_nb_total,
-                test_nb_correct,
-                test_nb_delta,
-                test_nb_missed,
-            ) = compute_nb_correct(self.test_input[:10000])
+        (
+            test_nb_total,
+            test_nb_correct,
+            test_nb_delta,
+            test_nb_missed,
+        ) = compute_nb_correct(self.test_input[:10000])
 
-            logger(
-                f"accuracy_test {n_epoch} nb_total {test_nb_total} nb_correct {test_nb_correct} accuracy {(100.0*test_nb_correct)/test_nb_total:.02f}%"
-            )
+        logger(
+            f"accuracy_test {n_epoch} nb_total {test_nb_total} nb_correct {test_nb_correct} accuracy {(100.0*test_nb_correct)/test_nb_total:.02f}%"
+        )
 
-            nb_total = test_nb_delta.sum() + test_nb_missed
-            for d in range(test_nb_delta.size(0)):
-                logger(
-                    f"error_value {n_epoch} delta {d} {test_nb_delta[d]} {test_nb_delta[d]*100/nb_total:.02f}%"
-                )
+        nb_total = test_nb_delta.sum() + test_nb_missed
+        for d in range(test_nb_delta.size(0)):
             logger(
-                f"error_value {n_epoch} missed {test_nb_missed} {test_nb_missed*100/nb_total:.02f}%"
+                f"error_value {n_epoch} delta {d} {test_nb_delta[d]} {test_nb_delta[d]*100/nb_total:.02f}%"
             )
+        logger(
+            f"error_value {n_epoch} missed {test_nb_missed} {test_nb_missed*100/nb_total:.02f}%"
+        )
 
-            ##############################################################
-            # Log a few generated sequences
-            if input_file is None:
-                input = self.test_input[:10]
-            else:
-                with open(input_file, "r") as f:
-                    sequences = [e.strip() for e in f.readlines()]
-                    sequences = [s + " " + "#" * 50 for s in sequences]
-                    input = self.tensorize(sequences)
-
-            result = input.clone()
-            s = (result == self.space).long()
-            ar_mask = (s.cumsum(dim=1) - s).clamp(min=0, max=1)
-            result = (1 - ar_mask) * result + ar_mask * self.filler
+        ##############################################################
+        # Log a few generated sequences
+        if input_file is None:
+            input = self.test_input[:10]
+        else:
+            with open(input_file, "r") as f:
+                sequences = [e.strip() for e in f.readlines()]
+                sequences = [s + " " + "#" * 50 for s in sequences]
+                input = self.tensorize(sequences)
 
-            for n in range(result.size(0)):
-                logger(f"test_before {self.seq2str(result[n])}")
+        result = input.clone()
+        s = (result == self.space).long()
+        ar_mask = (s.cumsum(dim=1) - s).clamp(min=0, max=1)
+        result = (1 - ar_mask) * result + ar_mask * self.filler
 
-            masked_inplace_autoregression(
-                model,
-                self.batch_size,
-                result,
-                ar_mask,
-                deterministic_synthesis,
-                device=self.device,
-            )
+        for n in range(result.size(0)):
+            logger(f"test_before {self.seq2str(result[n])}")
 
-            correct = (1 - ar_mask) * self.space + ar_mask * input
-            for n in range(result.size(0)):
-                comment = "GOOD" if (result[n] - input[n]).abs().max() == 0 else ""
-                logger(f"test_after  {self.seq2str(result[n])} {comment}")
-                logger(f"truth       {self.seq2str(correct[n])}")
-            ##############################################################
+        masked_inplace_autoregression(
+            model,
+            self.batch_size,
+            result,
+            ar_mask,
+            deterministic_synthesis,
+            device=self.device,
+        )
 
-            model.train(t)
+        correct = (1 - ar_mask) * self.space + ar_mask * input
+        for n in range(result.size(0)):
+            comment = "GOOD" if (result[n] - input[n]).abs().max() == 0 else ""
+            logger(f"test_after  {self.seq2str(result[n])} {comment}")
+            logger(f"truth       {self.seq2str(correct[n])}")
+        ##############################################################
 
 
 ######################################################################