"_" + "".join([chr(ord("A") + n) for n in range(len(colors) - 1)]) + "><"
)
- def __init__(self, height=6, width=8, nb_birds=3, nb_iterations=2):
+ def __init__(self, height=6, width=8, nb_birds=3, speed=1, nb_iterations=4):
self.height = height
self.width = width
self.nb_birds = nb_birds
+ self.speed = speed
self.nb_iterations = nb_iterations
def direction_tokens(self):
return self.token_forward, self.token_backward
- def generate_seq(self, nb, return_iterations=False):
- pairs = []
- kept_iterations = []
+ def generate_seq(self, nb, return_frame_sequences=False):
+ frame_sequences = []
for _ in tqdm.tqdm(range(nb), dynamic_ncols=True, desc="world generation"):
- while True:
- iterations = []
-
- f_start = torch.zeros(self.height, self.width, dtype=torch.int64)
-
- i, j, vi, vj = (
- torch.empty(self.nb_birds, dtype=torch.int64),
- torch.empty(self.nb_birds, dtype=torch.int64),
- torch.empty(self.nb_birds, dtype=torch.int64),
- torch.empty(self.nb_birds, dtype=torch.int64),
- )
-
- col = (
- torch.randperm(self.colors.size(0) - 1)[: self.nb_birds]
- .sort()
- .values
- + 1
- )
-
+ result = torch.zeros(
+ self.nb_iterations, self.height, self.width, dtype=torch.int64
+ )
+
+ i, j, vi, vj = (
+ torch.empty(self.nb_birds, dtype=torch.int64),
+ torch.empty(self.nb_birds, dtype=torch.int64),
+ torch.empty(self.nb_birds, dtype=torch.int64),
+ torch.empty(self.nb_birds, dtype=torch.int64),
+ )
+
+ col = (
+ torch.randperm(self.colors.size(0) - 1)[: self.nb_birds].sort().values
+ + 1
+ )
+
+ for n in range(self.nb_birds):
+ while True:
+ i[n] = torch.randint(self.height, (1,))
+ j[n] = torch.randint(self.width, (1,))
+ vm = torch.randint(4, (1,))
+ vi[n], vj[n] = (vm % 2) * 2 - 1, (vm // 2) * 2 - 1
+ if (
+ i[n] - vi[n] >= 0
+ and i[n] - vi[n] < self.height
+ and j[n] - vj[n] >= 0
+ and j[n] - vj[n] < self.width
+ ):
+ break
+
+ for l in range(self.nb_iterations):
for n in range(self.nb_birds):
c = col[n]
+ result[l, i[n], j[n]] = c
+ result[l, i[n] - vi[n], j[n]] = c
+ result[l, i[n], j[n] - vj[n]] = c
- while True:
- i[n], j[n] = (
- torch.randint(self.height, (1,))[0],
- torch.randint(self.width, (1,))[0],
- )
- vm = torch.randint(4, (1,))[0]
- vi[n], vj[n] = (vm % 2) * 2 - 1, (vm // 2) * 2 - 1
- if (
- i[n] - vi[n] >= 0
- and i[n] - vi[n] < self.height
- and j[n] - vj[n] >= 0
- and j[n] - vj[n] < self.width
- and f_start[i[n], j[n]] == 0
- and f_start[i[n] - vi[n], j[n]] == 0
- and f_start[i[n], j[n] - vj[n]] == 0
- ):
- break
-
- f_start[i[n], j[n]] = c
- f_start[i[n] - vi[n], j[n]] = c
- f_start[i[n], j[n] - vj[n]] = c
-
- f_end = f_start.clone()
-
- for l in range(self.nb_iterations):
- iterations.append(f_end.clone())
- f_end[...] = 0
- nb_collisions = 0
- for n in range(self.nb_birds):
- c = col[n]
-
- pi, pj, pvi, pvj = (
- i[n].item(),
- j[n].item(),
- vi[n].item(),
- vj[n].item(),
- )
-
- if (i[n] == 0 and vi[n] == -1) or (
- i[n] == self.height - 1 and vi[n] == 1
- ):
- vi[n] = -vi[n]
- if (j[n] == 0 and vj[n] == -1) or (
- j[n] == self.width - 1 and vj[n] == 1
- ):
- vj[n] = -vj[n]
-
- i[n] += vi[n]
- j[n] += vj[n]
-
- if not (
- f_end[i[n], j[n]] == 0
- and f_end[i[n] - vi[n], j[n]] == 0
- and f_end[i[n], j[n] - vj[n]] == 0
- ):
- nb_collisions += 1
-
- f_end[i[n], j[n]] = c
- f_end[i[n] - vi[n], j[n]] = c
- f_end[i[n], j[n] - vj[n]] = c
-
- iterations.append(f_end.clone())
-
- if nb_collisions == 0:
- break
-
- kept_iterations.append(iterations)
- pairs.append((f_start, f_end))
-
- result = []
- for p in pairs:
- if torch.rand(1) < 0.5:
- result.append(
- torch.cat(
- [
- p[0].flatten(),
- torch.tensor([self.token_forward]),
- p[1].flatten(),
- ],
- dim=0,
- )[None, :]
- )
- else:
- result.append(
- torch.cat(
- [
- p[1].flatten(),
- torch.tensor([self.token_backward]),
- p[0].flatten(),
- ],
- dim=0,
- )[None, :]
- )
-
- if return_iterations:
- # iterations = torch.cat([ torch.cat([ x[None, None] for x in l], dim = 1) for l in kept_iterations ], dim=0)
- return torch.cat(result, dim=0), kept_iterations
- else:
- return torch.cat(result, dim=0)
-
- ######################################################################
+ if (i[n] == 0 and vi[n] == -1) or (
+ i[n] == self.height - 1 and vi[n] == 1
+ ):
+ vi[n] = -vi[n]
- def generate_seq_old(
- self,
- nb,
- ):
- pairs = []
-
- for n in tqdm.tqdm(range(nb), dynamic_ncols=True, desc="world generation"):
- f_start = torch.zeros(self.height, self.width, dtype=torch.int64)
- f_end = torch.zeros(self.height, self.width, dtype=torch.int64)
- n = torch.arange(f_start.size(0))
-
- for c in (
- (torch.randperm(self.nb_bird_tokens) + self.first_bird_token)[
- : self.nb_birds
- ]
- .sort()
- .values
- ):
- i, j = (
- torch.randint(self.height - 2, (1,))[0] + 1,
- torch.randint(self.width - 2, (1,))[0] + 1,
- )
- vm = torch.randint(4, (1,))[0]
- vi, vj = (vm // 2) * (2 * (vm % 2) - 1), (1 - vm // 2) * (
- 2 * (vm % 2) - 1
- )
+ if (j[n] == 0 and vj[n] == -1) or (
+ j[n] == self.width - 1 and vj[n] == 1
+ ):
+ vj[n] = -vj[n]
- f_start[i, j] = c
- f_start[i - vi, j - vj] = c
- f_start[i + vj, j - vi] = c
- f_start[i - vj, j + vi] = c
+ i[n] += vi[n]
+ j[n] += vj[n]
- for l in range(self.nb_iterations):
- i += vi
- j += vj
- if i < 0 or i >= self.height or j < 0 or j >= self.width:
- i -= vi
- j -= vj
- vi, vj = -vi, -vj
- i += vi
- j += vj
+ frame_sequences.append(result)
- f_end[i, j] = c
- f_end[i - vi, j - vj] = c
- f_end[i + vj, j - vi] = c
- f_end[i - vj, j + vi] = c
+ if return_frame_sequences:
+ return frame_sequences
- pairs.append((f_start, f_end))
+ # Randomize the time direction, annd convert to token
+ # sequences with the time direction tokens added
result = []
- for p in pairs:
+
+ for frame_sequence in frame_sequences:
+ a = []
if torch.rand(1) < 0.5:
- result.append(
- torch.cat(
- [
- p[0].flatten(),
- torch.tensor([self.token_forward]),
- p[1].flatten(),
- ],
- dim=0,
- )[None, :]
- )
+ for frame in frame_sequence:
+ if len(a) > 0:
+ a.append(torch.tensor([self.token_forward]))
+ a.append(frame.flatten())
else:
- result.append(
- torch.cat(
- [
- p[1].flatten(),
- torch.tensor([self.token_backward]),
- p[0].flatten(),
- ],
- dim=0,
- )[None, :]
- )
+ for frame in reversed(frame_sequence):
+ if len(a) > 0:
+ a.append(torch.tensor([self.token_backward]))
+ a.append(frame.flatten())
+
+ result.append(torch.cat(a, dim=0)[None, :])
return torch.cat(result, dim=0)
+ ######################################################################
+
def frame2img(self, x, scale=15):
x = x.reshape(-1, self.height, self.width)
m = torch.logical_and(
return x
def seq2img(self, seq, scale=15):
- f_first = seq[:, : self.height * self.width].reshape(
- -1, self.height, self.width
- )
- f_second = seq[:, self.height * self.width + 1 :].reshape(
- -1, self.height, self.width
- )
- direction = seq[:, self.height * self.width]
-
- direction_symbol = torch.full(
- (direction.size(0), self.height * scale - 1, scale), 0
- )
- direction_symbol = self.colors[direction_symbol].permute(0, 3, 1, 2)
- separator = torch.full((direction.size(0), 3, self.height * scale - 1, 1), 0)
-
- for n in range(direction_symbol.size(0)):
- if direction[n] == self.token_forward:
- for k in range(scale):
- for l in [0, 1]:
- direction_symbol[
- n,
- :,
- (self.height * scale) // 2 - scale // 2 + k - l,
- 3 + scale // 2 - abs(k - scale // 2),
- ] = 0
- elif direction[n] == self.token_backward:
- for k in range(scale):
- for l in [0, 1]:
- direction_symbol[
- n,
- :,
- (self.height * scale) // 2 - scale // 2 + k - l,
- 3 + abs(k - scale // 2),
- ] = 0
- else:
- for k in range(2, scale - 2):
- for l in [0, 1]:
- direction_symbol[
- n,
- :,
- (self.height * scale) // 2 - scale // 2 + k - l,
- k,
- ] = 0
- direction_symbol[
- n,
- :,
- (self.height * scale) // 2 - scale // 2 + k - l,
- scale - 1 - k,
- ] = 0
-
- return torch.cat(
- [
- self.frame2img(f_first, scale),
+ all = [
+ self.frame2img(
+ seq[:, : self.height * self.width].reshape(-1, self.height, self.width),
+ scale,
+ )
+ ]
+
+ separator = torch.full((seq.size(0), 3, self.height * scale - 1, 1), 0)
+
+ t = self.height * self.width
+
+ while t < seq.size(1):
+ direction_tokens = seq[:, t]
+ t += 1
+
+ direction_images = self.colors[
+ torch.full(
+ (direction_tokens.size(0), self.height * scale - 1, scale), 0
+ )
+ ].permute(0, 3, 1, 2)
+
+ for n in range(direction_tokens.size(0)):
+ if direction_tokens[n] == self.token_forward:
+ for k in range(scale):
+ for l in [0, 1]:
+ direction_images[
+ n,
+ :,
+ (self.height * scale) // 2 - scale // 2 + k - l,
+ 3 + scale // 2 - abs(k - scale // 2),
+ ] = 0
+ elif direction_tokens[n] == self.token_backward:
+ for k in range(scale):
+ for l in [0, 1]:
+ direction_images[
+ n,
+ :,
+ (self.height * scale) // 2 - scale // 2 + k - l,
+ 3 + abs(k - scale // 2),
+ ] = 0
+ else:
+ for k in range(2, scale - 2):
+ for l in [0, 1]:
+ direction_images[
+ n,
+ :,
+ (self.height * scale) // 2 - scale // 2 + k - l,
+ k,
+ ] = 0
+ direction_images[
+ n,
+ :,
+ (self.height * scale) // 2 - scale // 2 + k - l,
+ scale - 1 - k,
+ ] = 0
+
+ all += [
separator,
- direction_symbol,
+ direction_images,
separator,
- self.frame2img(f_second, scale),
- ],
- dim=3,
- )
+ self.frame2img(
+ seq[:, t : t + self.height * self.width].reshape(
+ -1, self.height, self.width
+ ),
+ scale,
+ ),
+ ]
+
+ t += self.height * self.width
+
+ return torch.cat(all, dim=3)
def seq2str(self, seq):
result = []
if __name__ == "__main__":
import time
- sky = Sky(height=6, width=8, nb_iterations=100)
+ sky = Sky(height=6, width=8, speed=1, nb_iterations=4)
start_time = time.perf_counter()
- seq, it = sky.generate_seq(nb=64, return_iterations=True)
+ seq = sky.generate_seq(nb=64)
delay = time.perf_counter() - start_time
print(f"{seq.size(0)/delay:02f} seq/s")
- print(sky.seq2str(seq[:4]))
+ # print(sky.seq2str(seq[:4]))
- for t in range(len(it[0])):
- img = torch.cat([sky.frame2img(f[t]) for f in it], dim=0)
- torchvision.utils.save_image(
- img.float() / 255.0,
- f"/tmp/frame_{t:03d}.png",
- nrow=8,
- padding=6,
- pad_value=0,
- )
+ # for t in range(len(it[0])):
+ # img = torch.cat([sky.frame2img(f[t]) for f in it], dim=0)
+ # torchvision.utils.save_image(
+ # img.float() / 255.0,
+ # f"/tmp/frame_{t:03d}.png",
+ # nrow=8,
+ # padding=6,
+ # pad_value=0,
+ # )
# m = (torch.rand(seq.size()) < 0.05).long()
# seq = (1 - m) * seq + m * 23
+ print(seq.size())
img = sky.seq2img(seq)
print(img.size())