Update.
authorFrançois Fleuret <francois@fleuret.org>
Thu, 27 Jun 2024 10:33:15 +0000 (12:33 +0200)
committerFrançois Fleuret <francois@fleuret.org>
Thu, 27 Jun 2024 10:33:15 +0000 (12:33 +0200)
main.py
sky.py

diff --git a/main.py b/main.py
index d063423..232c724 100755 (executable)
--- a/main.py
+++ b/main.py
@@ -213,7 +213,7 @@ assert args.nb_train_samples % args.batch_size == 0
 assert args.nb_test_samples % args.batch_size == 0
 
 quizz_machine = quizz_machine.QuizzMachine(
-    problem=sky.Sky(height=6, width=8, nb_birds=3, nb_iterations=2),
+    problem=sky.Sky(height=6, width=8, nb_birds=3, nb_iterations=2, speed=2),
     nb_train_samples=args.nb_train_samples,
     nb_test_samples=args.nb_test_samples,
     batch_size=args.physical_batch_size,
diff --git a/sky.py b/sky.py
index ac6cbdc..fdc1689 100755 (executable)
--- a/sky.py
+++ b/sky.py
@@ -44,220 +44,99 @@ class Sky(problem.Problem):
         "_" + "".join([chr(ord("A") + n) for n in range(len(colors) - 1)]) + "><"
     )
 
-    def __init__(self, height=6, width=8, nb_birds=3, nb_iterations=2):
+    def __init__(self, height=6, width=8, nb_birds=3, speed=1, nb_iterations=4):
         self.height = height
         self.width = width
         self.nb_birds = nb_birds
+        self.speed = speed
         self.nb_iterations = nb_iterations
 
     def direction_tokens(self):
         return self.token_forward, self.token_backward
 
-    def generate_seq(self, nb, return_iterations=False):
-        pairs = []
-        kept_iterations = []
+    def generate_seq(self, nb, return_frame_sequences=False):
+        frame_sequences = []
 
         for _ in tqdm.tqdm(range(nb), dynamic_ncols=True, desc="world generation"):
-            while True:
-                iterations = []
-
-                f_start = torch.zeros(self.height, self.width, dtype=torch.int64)
-
-                i, j, vi, vj = (
-                    torch.empty(self.nb_birds, dtype=torch.int64),
-                    torch.empty(self.nb_birds, dtype=torch.int64),
-                    torch.empty(self.nb_birds, dtype=torch.int64),
-                    torch.empty(self.nb_birds, dtype=torch.int64),
-                )
-
-                col = (
-                    torch.randperm(self.colors.size(0) - 1)[: self.nb_birds]
-                    .sort()
-                    .values
-                    + 1
-                )
-
+            result = torch.zeros(
+                self.nb_iterations, self.height, self.width, dtype=torch.int64
+            )
+
+            i, j, vi, vj = (
+                torch.empty(self.nb_birds, dtype=torch.int64),
+                torch.empty(self.nb_birds, dtype=torch.int64),
+                torch.empty(self.nb_birds, dtype=torch.int64),
+                torch.empty(self.nb_birds, dtype=torch.int64),
+            )
+
+            col = (
+                torch.randperm(self.colors.size(0) - 1)[: self.nb_birds].sort().values
+                + 1
+            )
+
+            for n in range(self.nb_birds):
+                while True:
+                    i[n] = torch.randint(self.height, (1,))
+                    j[n] = torch.randint(self.width, (1,))
+                    vm = torch.randint(4, (1,))
+                    vi[n], vj[n] = (vm % 2) * 2 - 1, (vm // 2) * 2 - 1
+                    if (
+                        i[n] - vi[n] >= 0
+                        and i[n] - vi[n] < self.height
+                        and j[n] - vj[n] >= 0
+                        and j[n] - vj[n] < self.width
+                    ):
+                        break
+
+            for l in range(self.nb_iterations):
                 for n in range(self.nb_birds):
                     c = col[n]
+                    result[l, i[n], j[n]] = c
+                    result[l, i[n] - vi[n], j[n]] = c
+                    result[l, i[n], j[n] - vj[n]] = c
 
-                    while True:
-                        i[n], j[n] = (
-                            torch.randint(self.height, (1,))[0],
-                            torch.randint(self.width, (1,))[0],
-                        )
-                        vm = torch.randint(4, (1,))[0]
-                        vi[n], vj[n] = (vm % 2) * 2 - 1, (vm // 2) * 2 - 1
-                        if (
-                            i[n] - vi[n] >= 0
-                            and i[n] - vi[n] < self.height
-                            and j[n] - vj[n] >= 0
-                            and j[n] - vj[n] < self.width
-                            and f_start[i[n], j[n]] == 0
-                            and f_start[i[n] - vi[n], j[n]] == 0
-                            and f_start[i[n], j[n] - vj[n]] == 0
-                        ):
-                            break
-
-                    f_start[i[n], j[n]] = c
-                    f_start[i[n] - vi[n], j[n]] = c
-                    f_start[i[n], j[n] - vj[n]] = c
-
-                f_end = f_start.clone()
-
-                for l in range(self.nb_iterations):
-                    iterations.append(f_end.clone())
-                    f_end[...] = 0
-                    nb_collisions = 0
-                    for n in range(self.nb_birds):
-                        c = col[n]
-
-                        pi, pj, pvi, pvj = (
-                            i[n].item(),
-                            j[n].item(),
-                            vi[n].item(),
-                            vj[n].item(),
-                        )
-
-                        if (i[n] == 0 and vi[n] == -1) or (
-                            i[n] == self.height - 1 and vi[n] == 1
-                        ):
-                            vi[n] = -vi[n]
-                        if (j[n] == 0 and vj[n] == -1) or (
-                            j[n] == self.width - 1 and vj[n] == 1
-                        ):
-                            vj[n] = -vj[n]
-
-                        i[n] += vi[n]
-                        j[n] += vj[n]
-
-                        if not (
-                            f_end[i[n], j[n]] == 0
-                            and f_end[i[n] - vi[n], j[n]] == 0
-                            and f_end[i[n], j[n] - vj[n]] == 0
-                        ):
-                            nb_collisions += 1
-
-                        f_end[i[n], j[n]] = c
-                        f_end[i[n] - vi[n], j[n]] = c
-                        f_end[i[n], j[n] - vj[n]] = c
-
-                iterations.append(f_end.clone())
-
-                if nb_collisions == 0:
-                    break
-
-            kept_iterations.append(iterations)
-            pairs.append((f_start, f_end))
-
-        result = []
-        for p in pairs:
-            if torch.rand(1) < 0.5:
-                result.append(
-                    torch.cat(
-                        [
-                            p[0].flatten(),
-                            torch.tensor([self.token_forward]),
-                            p[1].flatten(),
-                        ],
-                        dim=0,
-                    )[None, :]
-                )
-            else:
-                result.append(
-                    torch.cat(
-                        [
-                            p[1].flatten(),
-                            torch.tensor([self.token_backward]),
-                            p[0].flatten(),
-                        ],
-                        dim=0,
-                    )[None, :]
-                )
-
-        if return_iterations:
-            # iterations = torch.cat([ torch.cat([ x[None, None] for x in l], dim = 1) for l in kept_iterations ], dim=0)
-            return torch.cat(result, dim=0), kept_iterations
-        else:
-            return torch.cat(result, dim=0)
-
-    ######################################################################
+                    if (i[n] == 0 and vi[n] == -1) or (
+                        i[n] == self.height - 1 and vi[n] == 1
+                    ):
+                        vi[n] = -vi[n]
 
-    def generate_seq_old(
-        self,
-        nb,
-    ):
-        pairs = []
-
-        for n in tqdm.tqdm(range(nb), dynamic_ncols=True, desc="world generation"):
-            f_start = torch.zeros(self.height, self.width, dtype=torch.int64)
-            f_end = torch.zeros(self.height, self.width, dtype=torch.int64)
-            n = torch.arange(f_start.size(0))
-
-            for c in (
-                (torch.randperm(self.nb_bird_tokens) + self.first_bird_token)[
-                    : self.nb_birds
-                ]
-                .sort()
-                .values
-            ):
-                i, j = (
-                    torch.randint(self.height - 2, (1,))[0] + 1,
-                    torch.randint(self.width - 2, (1,))[0] + 1,
-                )
-                vm = torch.randint(4, (1,))[0]
-                vi, vj = (vm // 2) * (2 * (vm % 2) - 1), (1 - vm // 2) * (
-                    2 * (vm % 2) - 1
-                )
+                    if (j[n] == 0 and vj[n] == -1) or (
+                        j[n] == self.width - 1 and vj[n] == 1
+                    ):
+                        vj[n] = -vj[n]
 
-                f_start[i, j] = c
-                f_start[i - vi, j - vj] = c
-                f_start[i + vj, j - vi] = c
-                f_start[i - vj, j + vi] = c
+                    i[n] += vi[n]
+                    j[n] += vj[n]
 
-                for l in range(self.nb_iterations):
-                    i += vi
-                    j += vj
-                    if i < 0 or i >= self.height or j < 0 or j >= self.width:
-                        i -= vi
-                        j -= vj
-                        vi, vj = -vi, -vj
-                        i += vi
-                        j += vj
+            frame_sequences.append(result)
 
-                f_end[i, j] = c
-                f_end[i - vi, j - vj] = c
-                f_end[i + vj, j - vi] = c
-                f_end[i - vj, j + vi] = c
+        if return_frame_sequences:
+            return frame_sequences
 
-            pairs.append((f_start, f_end))
+        # Randomize the time direction, annd convert to token
+        # sequences with the time direction tokens added
 
         result = []
-        for p in pairs:
+
+        for frame_sequence in frame_sequences:
+            a = []
             if torch.rand(1) < 0.5:
-                result.append(
-                    torch.cat(
-                        [
-                            p[0].flatten(),
-                            torch.tensor([self.token_forward]),
-                            p[1].flatten(),
-                        ],
-                        dim=0,
-                    )[None, :]
-                )
+                for frame in frame_sequence:
+                    if len(a) > 0:
+                        a.append(torch.tensor([self.token_forward]))
+                    a.append(frame.flatten())
             else:
-                result.append(
-                    torch.cat(
-                        [
-                            p[1].flatten(),
-                            torch.tensor([self.token_backward]),
-                            p[0].flatten(),
-                        ],
-                        dim=0,
-                    )[None, :]
-                )
+                for frame in reversed(frame_sequence):
+                    if len(a) > 0:
+                        a.append(torch.tensor([self.token_backward]))
+                    a.append(frame.flatten())
+
+            result.append(torch.cat(a, dim=0)[None, :])
 
         return torch.cat(result, dim=0)
 
+    ######################################################################
+
     def frame2img(self, x, scale=15):
         x = x.reshape(-1, self.height, self.width)
         m = torch.logical_and(
@@ -286,65 +165,77 @@ class Sky(problem.Problem):
         return x
 
     def seq2img(self, seq, scale=15):
-        f_first = seq[:, : self.height * self.width].reshape(
-            -1, self.height, self.width
-        )
-        f_second = seq[:, self.height * self.width + 1 :].reshape(
-            -1, self.height, self.width
-        )
-        direction = seq[:, self.height * self.width]
-
-        direction_symbol = torch.full(
-            (direction.size(0), self.height * scale - 1, scale), 0
-        )
-        direction_symbol = self.colors[direction_symbol].permute(0, 3, 1, 2)
-        separator = torch.full((direction.size(0), 3, self.height * scale - 1, 1), 0)
-
-        for n in range(direction_symbol.size(0)):
-            if direction[n] == self.token_forward:
-                for k in range(scale):
-                    for l in [0, 1]:
-                        direction_symbol[
-                            n,
-                            :,
-                            (self.height * scale) // 2 - scale // 2 + k - l,
-                            3 + scale // 2 - abs(k - scale // 2),
-                        ] = 0
-            elif direction[n] == self.token_backward:
-                for k in range(scale):
-                    for l in [0, 1]:
-                        direction_symbol[
-                            n,
-                            :,
-                            (self.height * scale) // 2 - scale // 2 + k - l,
-                            3 + abs(k - scale // 2),
-                        ] = 0
-            else:
-                for k in range(2, scale - 2):
-                    for l in [0, 1]:
-                        direction_symbol[
-                            n,
-                            :,
-                            (self.height * scale) // 2 - scale // 2 + k - l,
-                            k,
-                        ] = 0
-                        direction_symbol[
-                            n,
-                            :,
-                            (self.height * scale) // 2 - scale // 2 + k - l,
-                            scale - 1 - k,
-                        ] = 0
-
-        return torch.cat(
-            [
-                self.frame2img(f_first, scale),
+        all = [
+            self.frame2img(
+                seq[:, : self.height * self.width].reshape(-1, self.height, self.width),
+                scale,
+            )
+        ]
+
+        separator = torch.full((seq.size(0), 3, self.height * scale - 1, 1), 0)
+
+        t = self.height * self.width
+
+        while t < seq.size(1):
+            direction_tokens = seq[:, t]
+            t += 1
+
+            direction_images = self.colors[
+                torch.full(
+                    (direction_tokens.size(0), self.height * scale - 1, scale), 0
+                )
+            ].permute(0, 3, 1, 2)
+
+            for n in range(direction_tokens.size(0)):
+                if direction_tokens[n] == self.token_forward:
+                    for k in range(scale):
+                        for l in [0, 1]:
+                            direction_images[
+                                n,
+                                :,
+                                (self.height * scale) // 2 - scale // 2 + k - l,
+                                3 + scale // 2 - abs(k - scale // 2),
+                            ] = 0
+                elif direction_tokens[n] == self.token_backward:
+                    for k in range(scale):
+                        for l in [0, 1]:
+                            direction_images[
+                                n,
+                                :,
+                                (self.height * scale) // 2 - scale // 2 + k - l,
+                                3 + abs(k - scale // 2),
+                            ] = 0
+                else:
+                    for k in range(2, scale - 2):
+                        for l in [0, 1]:
+                            direction_images[
+                                n,
+                                :,
+                                (self.height * scale) // 2 - scale // 2 + k - l,
+                                k,
+                            ] = 0
+                            direction_images[
+                                n,
+                                :,
+                                (self.height * scale) // 2 - scale // 2 + k - l,
+                                scale - 1 - k,
+                            ] = 0
+
+            all += [
                 separator,
-                direction_symbol,
+                direction_images,
                 separator,
-                self.frame2img(f_second, scale),
-            ],
-            dim=3,
-        )
+                self.frame2img(
+                    seq[:, t : t + self.height * self.width].reshape(
+                        -1, self.height, self.width
+                    ),
+                    scale,
+                ),
+            ]
+
+            t += self.height * self.width
+
+        return torch.cat(all, dim=3)
 
     def seq2str(self, seq):
         result = []
@@ -366,28 +257,29 @@ class Sky(problem.Problem):
 if __name__ == "__main__":
     import time
 
-    sky = Sky(height=6, width=8, nb_iterations=100)
+    sky = Sky(height=6, width=8, speed=1, nb_iterations=4)
 
     start_time = time.perf_counter()
-    seq, it = sky.generate_seq(nb=64, return_iterations=True)
+    seq = sky.generate_seq(nb=64)
     delay = time.perf_counter() - start_time
     print(f"{seq.size(0)/delay:02f} seq/s")
 
-    print(sky.seq2str(seq[:4]))
+    print(sky.seq2str(seq[:4]))
 
-    for t in range(len(it[0])):
-        img = torch.cat([sky.frame2img(f[t]) for f in it], dim=0)
-        torchvision.utils.save_image(
-            img.float() / 255.0,
-            f"/tmp/frame_{t:03d}.png",
-            nrow=8,
-            padding=6,
-            pad_value=0,
-        )
+    for t in range(len(it[0])):
+    # img = torch.cat([sky.frame2img(f[t]) for f in it], dim=0)
+    # torchvision.utils.save_image(
+    # img.float() / 255.0,
+    # f"/tmp/frame_{t:03d}.png",
+    # nrow=8,
+    # padding=6,
+    # pad_value=0,
+    # )
 
     # m = (torch.rand(seq.size()) < 0.05).long()
     # seq = (1 - m) * seq + m * 23
 
+    print(seq.size())
     img = sky.seq2img(seq)
     print(img.size())