device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
######################################################################
-
parser = argparse.ArgumentParser(description = 'My own GPT.')
parser.add_argument('--log_filename',
def vocabulary_size(self):
pass
- def produce_results(self, n_epoch, model, nb_tokens = 50):
+ def produce_results(self, n_epoch, model):
pass
######################################################################
def batches(self, split = 'train'):
assert split in { 'train', 'test' }
- if split == 'train':
- for batch in tqdm.tqdm(self.train_input.split(self.batch_size), desc = f'epoch-{split}'):
- yield batch
- else:
- for batch in tqdm.tqdm(self.test_input.split(self.batch_size), desc = f'epoch-{split}'):
- yield batch
+ input = self.train_input if split == 'train' else self.test_input
+ for batch in tqdm.tqdm(input.split(self.batch_size), desc = f'epoch-{split}'):
+ yield batch
def vocabulary_size(self):
return len(self.token2id)
def generate(self, primer_descr, model, nb_tokens):
results = autoregression(
model, self.batch_size,
- 1, nb_tokens, primer = descr2tensor(primer_descr),
+ nb_samples = 1, nb_tokens = nb_tokens, primer = descr2tensor(primer_descr),
device = self.device
)
return ' '.join([ self.id2token[t.item()] for t in results.flatten() ])
- def produce_results(self, n_epoch, model, nb_tokens = None):
- if nb_tokens is None:
- nb_tokens = self.height * self.width + 3
+ def produce_results(self, n_epoch, model):
+ nb_tokens = self.height * self.width + 3
result_descr = [ ]
nb_per_primer = 8
def vocabulary_size(self):
return len(self.vocab)
- def produce_results(self, n_epoch, model, nb_tokens = 50):
+ def produce_results(self, n_epoch, model):
+ nb_tokens = 50
file_name = f'result_wiki103_{n_epoch:04d}.txt'
with open(file_name, 'w') as outfile:
def vocabulary_size(self):
return 256
- def produce_results(self, n_epoch, model, nb_samples = 64):
+ def produce_results(self, n_epoch, model):
+ nb_samples = 64
results = autoregression(model, self.batch_size, nb_samples, 28 * 28, device = self.device)
image_name = f'result_mnist_{n_epoch:04d}.png'
torchvision.utils.save_image(1 - results.reshape(-1, 1, 28, 28) / 255.,