colors = torch.tensor(
[
[255, 255, 255],
- [255, 20, 147],
- [0, 0, 255],
+ [255, 0, 0],
[0, 192, 0],
+ [0, 0, 255],
+ [255, 192, 0],
[0, 255, 255],
+ [255, 0, 255],
+ [192, 255, 192],
+ [255, 192, 192],
+ [192, 192, 255],
[192, 192, 192],
- [106, 90, 205],
- [255, 0, 0],
- [220, 20, 60],
- [65, 105, 225],
- [255, 200, 0],
- # [255, 182, 193],
- # [75, 0, 130],
- # [128, 0, 128],
- # [30, 144, 255],
- # [135, 206, 235],
- # [0, 255, 0],
- # [64, 224, 208],
- # [250, 128, 114],
- # [255, 165, 0],
- # [0, 255, 255],
]
)
token2char = "_" + "".join([chr(ord("A") + n) for n in range(len(colors) - 1)]) + "><"
-def generate(
+def generate_seq(
nb,
height,
width,
nb_birds=3,
- nb_iterations=1,
+ nb_iterations=2,
):
pairs = []
for _ in tqdm.tqdm(range(nb), dynamic_ncols=True, desc="world generation"):
- f_start = torch.zeros(height, width, dtype=torch.int64)
+ while True:
+ f_start = torch.zeros(height, width, dtype=torch.int64)
+
+ i, j, vi, vj = (
+ torch.empty(nb_birds, dtype=torch.int64),
+ torch.empty(nb_birds, dtype=torch.int64),
+ torch.empty(nb_birds, dtype=torch.int64),
+ torch.empty(nb_birds, dtype=torch.int64),
+ )
+
+ col = torch.randperm(colors.size(0) - 1)[:nb_birds].sort().values + 1
- i, j, vi, vj = (
- torch.empty(nb_birds, dtype=torch.int64),
- torch.empty(nb_birds, dtype=torch.int64),
- torch.empty(nb_birds, dtype=torch.int64),
- torch.empty(nb_birds, dtype=torch.int64),
- )
-
- col = torch.randperm(colors.size(0) - 1)[:nb_birds].sort().values + 1
-
- for n in range(nb_birds):
- c = col[n]
-
- while True:
- i[n], j[n] = (
- torch.randint(height, (1,))[0],
- torch.randint(width, (1,))[0],
- )
- vm = torch.randint(4, (1,))[0]
- vi[n], vj[n] = (vm % 2) * 2 - 1, (vm // 2) * 2 - 1
- if (
- i[n] - vi[n] >= 0
- and i[n] - vi[n] < height
- and j[n] - vj[n] >= 0
- and j[n] - vj[n] < width
- and f_start[i[n], j[n]] == 0
- and f_start[i[n] - vi[n], j[n]] == 0
- and f_start[i[n], j[n] - vj[n]] == 0
- ):
- break
-
- f_start[i[n], j[n]] = c
- f_start[i[n] - vi[n], j[n]] = c
- f_start[i[n], j[n] - vj[n]] = c
-
- f_end = f_start.clone()
-
- for l in range(nb_iterations):
for n in range(nb_birds):
c = col[n]
- f_end[i[n], j[n]] = 0
- f_end[i[n] - vi[n], j[n]] = 0
- f_end[i[n], j[n] - vj[n]] = 0
- pi, pj, pvi, pvj = i[n].item(), j[n].item(), vi[n].item(), vj[n].item()
+ while True:
+ i[n], j[n] = (
+ torch.randint(height, (1,))[0],
+ torch.randint(width, (1,))[0],
+ )
+ vm = torch.randint(4, (1,))[0]
+ vi[n], vj[n] = (vm % 2) * 2 - 1, (vm // 2) * 2 - 1
+ if (
+ i[n] - vi[n] >= 0
+ and i[n] - vi[n] < height
+ and j[n] - vj[n] >= 0
+ and j[n] - vj[n] < width
+ and f_start[i[n], j[n]] == 0
+ and f_start[i[n] - vi[n], j[n]] == 0
+ and f_start[i[n], j[n] - vj[n]] == 0
+ ):
+ break
+
+ f_start[i[n], j[n]] = c
+ f_start[i[n] - vi[n], j[n]] = c
+ f_start[i[n], j[n] - vj[n]] = c
+
+ f_end = f_start.clone()
- assert (
- f_end[i[n], j[n]] == 0
- and f_end[i[n] - vi[n], j[n]] == 0
- and f_end[i[n], j[n] - vj[n]] == 0
- )
-
- if (i[n] == 0 and vi[n] == -1) or (i[n] == height - 1 and vi[n] == 1):
- vi[n] = -vi[n]
- if (j[n] == 0 and vj[n] == -1) or (j[n] == width - 1 and vj[n] == 1):
- vj[n] = -vj[n]
-
- i[n] += vi[n]
- j[n] += vj[n]
-
- if not (
- f_end[i[n], j[n]] == 0
- and f_end[i[n] - vi[n], j[n]] == 0
- and f_end[i[n], j[n] - vj[n]] == 0
- ):
- i[n], j[n], vi[n], vj[n] = pi, pj, pvi, pvj
-
- f_end[i[n], j[n]] = c
- f_end[i[n] - vi[n], j[n]] = c
- f_end[i[n], j[n] - vj[n]] = c
+ for l in range(nb_iterations):
+ f_end[...] = 0
+ nb_collisions = 0
+ for n in range(nb_birds):
+ c = col[n]
+
+ pi, pj, pvi, pvj = (
+ i[n].item(),
+ j[n].item(),
+ vi[n].item(),
+ vj[n].item(),
+ )
+
+ if (i[n] == 0 and vi[n] == -1) or (
+ i[n] == height - 1 and vi[n] == 1
+ ):
+ vi[n] = -vi[n]
+ if (j[n] == 0 and vj[n] == -1) or (
+ j[n] == width - 1 and vj[n] == 1
+ ):
+ vj[n] = -vj[n]
+
+ i[n] += vi[n]
+ j[n] += vj[n]
+
+ if not (
+ f_end[i[n], j[n]] == 0
+ and f_end[i[n] - vi[n], j[n]] == 0
+ and f_end[i[n], j[n] - vj[n]] == 0
+ ):
+ nb_collisions += 1
+
+ f_end[i[n], j[n]] = c
+ f_end[i[n] - vi[n], j[n]] = c
+ f_end[i[n], j[n] - vj[n]] = c
+
+ if nb_collisions == 0:
+ break
pairs.append((f_start, f_end))
return torch.cat(result, dim=0)
-def generate_(
+######################################################################
+
+
+def generate_seq_(
nb,
height,
width,
height, width = 6, 8
start_time = time.perf_counter()
- seq = generate(nb=90, height=height, width=width)
+ seq = generate_seq(nb=90, height=height, width=width)
delay = time.perf_counter() - start_time
print(f"{seq.size(0)/delay:02f} samples/s")