colors = torch.tensor(
[
[255, 255, 255],
- [0, 0, 255],
+ [255, 20, 147],
[0, 0, 255],
[0, 192, 0],
- [0, 255, 0],
- [0, 255, 127],
- [0, 255, 255],
[0, 255, 255],
- [30, 144, 255],
- [64, 224, 208],
- [65, 105, 225],
- [75, 0, 130],
- [106, 90, 205],
- [128, 0, 128],
- [135, 206, 235],
[192, 192, 192],
- [220, 20, 60],
- [250, 128, 114],
+ [106, 90, 205],
[255, 0, 0],
- [255, 0, 255],
- [255, 105, 180],
- [255, 127, 80],
- [255, 165, 0],
- [255, 182, 193],
- [255, 20, 147],
+ [220, 20, 60],
+ [65, 105, 225],
[255, 200, 0],
+ # [255, 182, 193],
+ # [75, 0, 130],
+ # [128, 0, 128],
+ # [30, 144, 255],
+ # [135, 206, 235],
+ # [0, 255, 0],
+ # [64, 224, 208],
+ # [250, 128, 114],
+ # [255, 165, 0],
+ # [0, 255, 255],
]
)
def generate(
+ nb,
+ height,
+ width,
+ nb_birds=3,
+ nb_iterations=1,
+):
+ pairs = []
+
+ for _ in tqdm.tqdm(range(nb), dynamic_ncols=True, desc="world generation"):
+ f_start = torch.zeros(height, width, dtype=torch.int64)
+
+ i, j, vi, vj = (
+ torch.empty(nb_birds, dtype=torch.int64),
+ torch.empty(nb_birds, dtype=torch.int64),
+ torch.empty(nb_birds, dtype=torch.int64),
+ torch.empty(nb_birds, dtype=torch.int64),
+ )
+
+ col = torch.randperm(colors.size(0) - 1)[:nb_birds].sort().values + 1
+
+ for n in range(nb_birds):
+ c = col[n]
+
+ while True:
+ i[n], j[n] = (
+ torch.randint(height, (1,))[0],
+ torch.randint(width, (1,))[0],
+ )
+ vm = torch.randint(4, (1,))[0]
+ vi[n], vj[n] = (vm % 2) * 2 - 1, (vm // 2) * 2 - 1
+ if (
+ i[n] - vi[n] >= 0
+ and i[n] - vi[n] < height
+ and j[n] - vj[n] >= 0
+ and j[n] - vj[n] < width
+ and f_start[i[n], j[n]] == 0
+ and f_start[i[n] - vi[n], j[n]] == 0
+ and f_start[i[n], j[n] - vj[n]] == 0
+ ):
+ break
+
+ f_start[i[n], j[n]] = c
+ f_start[i[n] - vi[n], j[n]] = c
+ f_start[i[n], j[n] - vj[n]] = c
+
+ f_end = f_start.clone()
+
+ for l in range(nb_iterations):
+ for n in range(nb_birds):
+ c = col[n]
+ f_end[i[n], j[n]] = 0
+ f_end[i[n] - vi[n], j[n]] = 0
+ f_end[i[n], j[n] - vj[n]] = 0
+
+ pi, pj, pvi, pvj = i[n].item(), j[n].item(), vi[n].item(), vj[n].item()
+
+ assert (
+ f_end[i[n], j[n]] == 0
+ and f_end[i[n] - vi[n], j[n]] == 0
+ and f_end[i[n], j[n] - vj[n]] == 0
+ )
+
+ if (i[n] == 0 and vi[n] == -1) or (i[n] == height - 1 and vi[n] == 1):
+ vi[n] = -vi[n]
+ if (j[n] == 0 and vj[n] == -1) or (j[n] == width - 1 and vj[n] == 1):
+ vj[n] = -vj[n]
+
+ i[n] += vi[n]
+ j[n] += vj[n]
+
+ if not (
+ f_end[i[n], j[n]] == 0
+ and f_end[i[n] - vi[n], j[n]] == 0
+ and f_end[i[n], j[n] - vj[n]] == 0
+ ):
+ i[n], j[n], vi[n], vj[n] = pi, pj, pvi, pvj
+
+ f_end[i[n], j[n]] = c
+ f_end[i[n] - vi[n], j[n]] = c
+ f_end[i[n], j[n] - vj[n]] = c
+
+ pairs.append((f_start, f_end))
+
+ result = []
+ for p in pairs:
+ if torch.rand(1) < 0.5:
+ result.append(
+ torch.cat(
+ [p[0].flatten(), torch.tensor([token_forward]), p[1].flatten()],
+ dim=0,
+ )[None, :]
+ )
+ else:
+ result.append(
+ torch.cat(
+ [p[1].flatten(), torch.tensor([token_backward]), p[0].flatten()],
+ dim=0,
+ )[None, :]
+ )
+
+ return torch.cat(result, dim=0)
+
+
+def generate_(
nb,
height,
width,
n,
:,
(height * upscale) // 2 - upscale // 2 + k,
- 3 + abs(k - upscale // 2),
+ 3 + upscale // 2 - abs(k - upscale // 2),
] = 0
elif direction[n] == token_backward:
for k in range(upscale):
n,
:,
(height * upscale) // 2 - upscale // 2 + k,
- 3 + upscale // 2 - abs(k - upscale // 2),
+ 3 + abs(k - upscale // 2),
] = 0
else:
for k in range(2, upscale - 2):