x = generate((10000, 1), model)
ax.set_xlim(-1.25, 1.25)
+ ax.spines.right.set_visible(False)
+ ax.spines.top.set_visible(False)
d = train_input.flatten().detach().to('cpu').numpy()
ax.hist(d, 25, (-1, 1),
d = x.detach().to('cpu').numpy()
ax.scatter(d[:, 0], d[:, 1],
- facecolors = 'none', color = 'red', label = 'Synthesis')
+ s = 2.0, color = 'red', label = 'Synthesis')
d = train_input[:x.size(0)].detach().to('cpu').numpy()
ax.scatter(d[:, 0], d[:, 1],
- s = 1.0, color = 'blue', label = 'Train')
+ s = 2.0, color = 'gray', label = 'Train')
ax.legend(frameon = False, loc = 2)