parser.add_argument("--expr_input_file", type=str, default=None)
+##############################
+# World options
+
+parser.add_argument("--world_vqae_nb_epochs", type=int, default=10)
+
######################################################################
args = parser.parse_args()
nb_train_samples=args.nb_train_samples,
nb_test_samples=args.nb_test_samples,
batch_size=args.batch_size,
+ vqae_nb_epochs=args.world_vqae_nb_epochs,
device=device,
)
progress_bar_desc="autoregression",
device=torch.device("cpu"),
):
+ assert input.size() == ar_mask.size()
+
batches = zip(input.split(batch_size), ar_mask.split(batch_size))
if progress_bar_desc is not None:
batches,
dynamic_ncols=True,
desc=progress_bar_desc,
- total=input.size(0) // batch_size,
+ #total=input.size(0) // batch_size,
)
with torch.autograd.no_grad():
######################################################################
+
import world
nb_train_samples,
nb_test_samples,
batch_size,
+ vqae_nb_epochs,
device=torch.device("cpu"),
):
self.batch_size = batch_size
self.device = device
(
- self.train_input,
+ train_frames,
self.train_actions,
- self.test_input,
+ test_frames,
self.test_actions,
self.frame2seq,
self.seq2frame,
nb_test_samples,
mode="first_last",
nb_steps=30,
- nb_epochs=2,
+ nb_epochs=vqae_nb_epochs,
+ device=device,
)
+ self.train_input = self.frame2seq(train_frames)
+ self.train_input = self.train_input.reshape(self.train_input.size(0) // 2, -1)
+ self.test_input = self.frame2seq(test_frames)
+ self.test_input = self.test_input.reshape(self.test_input.size(0) // 2, -1)
+
self.nb_codes = max(self.train_input.max(), self.test_input.max()) + 1
def batches(self, split="train", nb_to_use=-1, desc=None):
def produce_results(
self, n_epoch, model, result_dir, logger, deterministic_synthesis
):
- pass
+ l = self.train_input.size(1)
+ k = torch.arange(l, device=self.device)[None, :]
+ result = self.test_input[:64].clone()
+
+ ar_mask = (k >= l // 2).long().expand_as(result)
+ result *= 1 - ar_mask
+
+ masked_inplace_autoregression(
+ model,
+ self.batch_size,
+ result,
+ ar_mask,
+ deterministic_synthesis,
+ device=self.device,
+ )
+
+ result = result.reshape(result.size(0) * 2, -1)
+
+ frames = self.seq2frame(result)
+ image_name = os.path.join(result_dir, f"world_result_{n_epoch:04d}.png")
+ torchvision.utils.save_image(
+ frames.float() / (world.Box.nb_rgb_levels - 1),
+ image_name,
+ nrow=8,
+ padding=1,
+ pad_value=0.0,
+ )
+ logger(f"wrote {image_name}")
######################################################################
def train_encoder(
train_input,
test_input,
- depth=3,
+ depth=2,
dim_hidden=48,
nb_bits_per_token=8,
lr_start=1e-3,
def create_data_and_processors(
- nb_train_samples, nb_test_samples, mode, nb_steps, nb_epochs=10
+ nb_train_samples,
+ nb_test_samples,
+ mode,
+ nb_steps,
+ nb_epochs=10,
+ device=torch.device("cpu"),
):
assert mode in ["first_last"]
steps = [True] + [False] * (nb_steps + 1) + [True]
train_input, train_actions = generate_episodes(nb_train_samples, steps)
+ train_input, train_actions = train_input.to(device), train_actions.to(device)
test_input, test_actions = generate_episodes(nb_test_samples, steps)
+ test_input, test_actions = test_input.to(device), test_actions.to(device)
encoder, quantizer, decoder = train_encoder(
- train_input, test_input, nb_epochs=nb_epochs
+ train_input, test_input, nb_epochs=nb_epochs, device=device
)
encoder.train(False)
quantizer.train(False)