Update.
authorFrançois Fleuret <francois@fleuret.org>
Tue, 9 Jul 2024 15:11:56 +0000 (18:11 +0300)
committerFrançois Fleuret <francois@fleuret.org>
Tue, 9 Jul 2024 15:11:56 +0000 (18:11 +0300)
grids.py
main.py
problem.py
sky.py

index 47e5861..ba09225 100755 (executable)
--- a/grids.py
+++ b/grids.py
@@ -32,11 +32,16 @@ class Grids(problem.Problem):
         ("gray", [128, 128, 128]),
     ]
 
-    def __init__(self, device=torch.device("cpu")):
+    def __init__(
+        self,
+        max_nb_cached_chunks=None,
+        chunk_size=None,
+        nb_threads=-1,
+    ):
         self.colors = torch.tensor([c for _, c in self.named_colors])
         self.height = 10
         self.width = 10
-        self.device = device
+        super().__init__(max_nb_cached_chunks, chunk_size, nb_threads)
 
     ######################################################################
 
@@ -110,10 +115,10 @@ class Grids(problem.Problem):
                 c = c.long()[:, None]
                 c = (
                     (1 - ((c == 1).long() + (c == 0).long() + (c == -1).long()))
-                    * torch.tensor([64, 64, 64], device=c.device)
-                    + (c == 1).long() * torch.tensor([0, 255, 0], device=c.device)
-                    + (c == 0).long() * torch.tensor([255, 255, 255], device=c.device)
-                    + (c == -1).long() * torch.tensor([255, 0, 0], device=c.device)
+                    * torch.tensor([64, 64, 64])
+                    + (c == 1).long() * torch.tensor([0, 255, 0])
+                    + (c == 0).long() * torch.tensor([255, 255, 255])
+                    + (c == -1).long() * torch.tensor([255, 0, 0])
                 )
                 y[...] = c[:, :, None, None]
 
@@ -194,122 +199,41 @@ class Grids(problem.Problem):
     def nb_token_values(self):
         return len(self.colors)
 
-    # @torch.compile
-    def rec_coo_(self, nb_rec, min_height=3, min_width=3):
-        # @torch.compile
-        def overlap(ia, ja, ib, jb):
-            return (
-                ia[1] >= ib[0] and ia[0] <= ib[1] and ja[1] >= jb[0] and ja[0] <= jb[1]
-            )
-
-        if nb_rec == 3:
-            while True:
-                i = torch.randint(self.height + 1, (nb_rec, 2)).sort(dim=1).values
-                j = torch.randint(self.width + 1, (nb_rec, 2)).sort(dim=1).values
-                if (
-                    not (
-                        overlap(i[0], j[0], i[1], j[1])
-                        or overlap(i[0], j[0], i[2], j[2])
-                        or overlap(i[1], j[1], i[2], j[2])
-                    )
-                    and (i[:, 1] - i[:, 0]).min() >= min_height
-                    and (j[:, 1] - j[:, 0]).min() >= min_width
-                ):
-                    break
-            return (
-                (i[0, 0], j[0, 0], i[0, 1], j[0, 1]),
-                (i[1, 0], j[1, 0], i[1, 1], j[1, 1]),
-                (i[2, 0], j[2, 0], i[2, 1], j[2, 1]),
-            )
-
-    # That's quite a tensorial spaghetti mess to sample
-    # non-overlapping rectangles quickly, but made the generation of
-    # 100k samples go from 1h50 with a lame pure python code to 3min30s
-    # with this one.
-    # @torch.compile
     def rec_coo(self, nb_rec, min_height=3, min_width=3):
-        nb_trials = 200
-
+        N = 10
         while True:
-            v = (
-                (
-                    torch.rand(nb_trials * nb_rec, self.height + 1, device=self.device)
-                    .sort(dim=-1)
-                    .indices
-                    < 2
+            i = torch.randint(self.height, (N, nb_rec, 2)).sort(dim=-1).values
+            j = torch.randint(self.width, (N, nb_rec, 2)).sort(dim=-1).values
+            if nb_rec == 2:
+                A_i1, A_i2, A_j1, A_j2 = i[:, 0, 0], i[:, 0, 1], j[:, 0, 0], j[:, 0, 1]
+                B_i1, B_i2, B_j1, B_j2 = i[:, 1, 0], i[:, 1, 1], j[:, 1, 0], j[:, 1, 1]
+                no_overlap = torch.logical_not(
+                    (A_i1 > B_i2) & (A_i2 < B_i1) & (A_j1 > B_j1) & (A_j2 < B_j1)
                 )
-                .long()
-                .cumsum(dim=1)
-                == 1
-            ).long()
-
-            h = (
-                (
-                    torch.rand(nb_trials * nb_rec, self.width + 1, device=self.device)
-                    .sort(dim=-1)
-                    .indices
-                    < 2
+                i, j = i[no_overlap], j[no_overlap]
+            elif nb_rec == 3:
+                A_i1, A_i2, A_j1, A_j2 = i[:, 0, 0], i[:, 0, 1], j[:, 0, 0], j[:, 0, 1]
+                B_i1, B_i2, B_j1, B_j2 = i[:, 1, 0], i[:, 1, 1], j[:, 1, 0], j[:, 1, 1]
+                C_i1, C_i2, C_j1, C_j2 = i[:, 2, 0], i[:, 2, 1], j[:, 2, 0], j[:, 2, 1]
+                no_overlap = (
+                    torch.logical_not(
+                        (A_i1 > B_i2) & (A_i2 < B_i1) & (A_j1 > B_j1) & (A_j2 < B_j1)
+                    )
+                    & torch.logical_not(
+                        (A_i1 > C_i2) & (A_i2 < C_i1) & (A_j1 > C_j1) & (A_j2 < C_j1)
+                    )
+                    & torch.logical_not(
+                        (B_i1 > C_i2) & (B_i2 < C_i1) & (B_j1 > C_j1) & (B_j2 < C_j1)
+                    )
                 )
-                .long()
-                .cumsum(dim=1)
-                == 1
-            ).long()
-
-            i = torch.logical_and(
-                v.sum(dim=-1) >= min_height, h.sum(dim=-1) >= min_width
-            )
-
-            v, h = v[i], h[i]
-            v = v[: v.size(0) - v.size(0) % nb_rec]
-            h = h[: h.size(0) - h.size(0) % nb_rec]
-            v = v.reshape(v.size(0) // nb_rec, nb_rec, -1)
-            h = h.reshape(h.size(0) // nb_rec, nb_rec, -1)
-
-            r = v[:, :, :, None] * h[:, :, None, :]
-
-            valid = r.sum(dim=1).flatten(1).max(dim=-1).values == 1
-
-            v = v[valid]
-            h = h[valid]
+                i, j = (i[no_overlap], j[no_overlap])
+            else:
+                assert nb_rec == 1
 
-            if v.size(0) > 0:
+            if i.size(0) > 1:
                 break
 
-        av = torch.arange(v.size(2), device=self.device)[None, :]
-        ah = torch.arange(h.size(2), device=self.device)[None, :]
-
-        return [
-            (i1.item(), j1.item(), i2.item() + 1, j2.item() + 1)
-            for i1, j1, i2, j2 in zip(
-                v.size(2) - (v[0] * (v.size(2) - av)).max(dim=-1).values,
-                h.size(2) - (h[0] * (h.size(2) - ah)).max(dim=-1).values,
-                (v[0] * av).max(dim=-1).values,
-                (h[0] * ah).max(dim=-1).values,
-            )
-        ]
-
-    # @torch.compile
-    def rec_coo_(self, x, n, min_height=3, min_width=3):
-        collision = x.new(x.size())
-        while True:
-            collision[...] = 0
-            result = []
-            for _ in range(n):
-                while True:
-                    i1, i2 = torch.randint(x.size(0), (2,))
-                    if i1 + min_height <= i2:
-                        break
-                while True:
-                    j1, j2 = torch.randint(x.size(1), (2,))
-                    if j1 + min_width <= j2:
-                        break
-                collision[i1:i2, j1:j2] += 1
-                if collision.max() > 1:
-                    break
-                result.append((i1, j1, i2, j2))
-            if collision.max() == 1:
-                break
-        return result
+        return [(i[0, k, 0], j[0, k, 0], i[0, k, 1], j[0, k, 1]) for k in range(nb_rec)]
 
     ######################################################################
 
@@ -478,29 +402,62 @@ class Grids(problem.Problem):
 
         return no, nq, nq_diag
 
-    # @torch.compile
     def task_count(self, A, f_A, B, f_B):
         N = (torch.randint(4, (1,)) + 2).item()
         c = torch.randperm(len(self.colors) - 1)[:N] + 1
 
         for X, f_X in [(A, f_A), (B, f_B)]:
+            l_q = torch.randperm(self.height * self.width)[
+                : self.height * self.width // 20
+            ]
+            l_d = torch.randint(N, l_q.size())
             nb = torch.zeros(N, dtype=torch.int64)
-            q = torch.randint(N, (self.height * self.width,))
-            k = torch.randperm(self.height * self.width)
-            for p in range(self.height * self.width):
-                i, j = k[p] % self.height, k[p] // self.height
-                no, nq, nq_diag = self.contact(X, i, j, c[q[p]])
-                if no == 0 and nq_diag == 0:
-                    if nq == 0:
-                        if nb[q[p]] < self.width:
-                            X[i, j] = c[q[p]]
-                            nb[q[p]] += 1
-                    if nq == 1:
-                        X[i, j] = c[q[p]]
-
-            for n in range(N):
-                for j in range(nb[n]):
-                    f_X[n, j] = c[n]
+
+            for q, e in zip(l_q, l_d):
+                d = c[e]
+                i, j = q % self.height, q // self.height
+                if (
+                    nb[e] < self.width
+                    and X[max(0, i - 1) : i + 2, max(0, j - 1) : j + 2] == 0
+                ).all():
+                    X[i, j] = d
+                    nb[e] += 1
+
+            l_q = torch.randperm((self.height - 2) * (self.width - 2))[
+                : self.height * self.width // 2
+            ]
+            l_d = torch.randint(N, l_q.size())
+            for q, e in zip(l_q, l_d):
+                d = c[e]
+                i, j = q % (self.height - 2) + 1, q // (self.height - 2) + 1
+                a1, a2, a3 = X[i - 1, j - 1 : j + 2]
+                a8, a4 = X[i, j - 1], X[i, j + 1]
+                a7, a6, a5 = X[i + 1, j - 1 : j + 2]
+                if (
+                    X[i, j] == 0
+                    and nb[e] < self.width
+                    and (a2 == 0 or a2 == d)
+                    and (a4 == 0 or a4 == d)
+                    and (a6 == 0 or a6 == d)
+                    and (a8 == 0 or a8 == d)
+                    and (a1 == 0 or a2 == d or a8 == d)
+                    and (a3 == 0 or a4 == d or a2 == d)
+                    and (a5 == 0 or a6 == d or a4 == d)
+                    and (a7 == 0 or a8 == d or a6 == d)
+                ):
+                    o = (
+                        (a2 != 0).long()
+                        + (a4 != 0).long()
+                        + (a6 != 0).long()
+                        + (a8 != 0).long()
+                    )
+                    if o <= 1:
+                        X[i, j] = d
+                        nb[e] += 1 - o
+
+            for e in range(N):
+                for j in range(nb[e]):
+                    f_X[e, j] = c[e]
 
     # @torch.compile
     def task_trajectory(self, A, f_A, B, f_B):
@@ -747,9 +704,7 @@ class Grids(problem.Problem):
         f_Bs = answers
         return (Bs == f_Bs).long().min(dim=-1).values > 0
 
-    def generate_prompts_and_answers(
-        self, nb, tasks=None, progress_bar=False, device="cpu"
-    ):
+    def generate_prompts_and_answers_(self, nb, tasks=None, progress_bar=False):
         if tasks is None:
             tasks = self.all_tasks()
 
@@ -803,6 +758,7 @@ class Grids(problem.Problem):
 if __name__ == "__main__":
     import time
 
+    # grids = Grids(max_nb_cached_chunks=5, chunk_size=100, nb_threads=4)
     grids = Grids()
 
     # nb = 1000
@@ -816,22 +772,22 @@ if __name__ == "__main__":
     # print(f"{prompts.size(0)/delay:02f} seq/s")
     # exit(0)
 
-    if True:
-        nb = 72
+    if True:
+    # nb = 72
 
-        for t in grids.all_tasks():
-            # for t in [grids.task_ortho]:
-            print(t.__name__)
-            prompts, answers = grids.generate_prompts_and_answers(nb, tasks=[t])
-            grids.save_quizzes("/tmp", t.__name__, prompts[:nb], answers[:nb], nrow=4)
+    # for t in grids.all_tasks():
+    # for t in [grids.task_count]:
+    # print(t.__name__)
+    # prompts, answers = grids.generate_prompts_and_answers_(nb, tasks=[t])
+    # grids.save_quizzes("/tmp", t.__name__, prompts[:nb], answers[:nb], nrow=4)
 
-        exit(0)
+    # exit(0)
 
-    nb = 500
+    nb = 1000
 
     for t in grids.all_tasks():
         start_time = time.perf_counter()
-        prompts, answers = grids.generate_prompts_and_answers(nb, tasks=[t])
+        prompts, answers = grids.generate_prompts_and_answers_(nb, tasks=[t])
         delay = time.perf_counter() - start_time
         print(f"{t.__name__} {prompts.size(0)/delay:02f} seq/s")
 
diff --git a/main.py b/main.py
index 9c3d7f1..aefc3a1 100755 (executable)
--- a/main.py
+++ b/main.py
@@ -15,7 +15,6 @@ import ffutils
 
 import mygpt
 import sky, grids, quiz_machine
-from problem import MultiThreadProblem
 
 # world quizzes vs. culture quizzes
 
@@ -78,7 +77,7 @@ parser.add_argument("--deterministic_synthesis", action="store_true", default=Fa
 
 parser.add_argument("--problem", type=str, default="grids")
 
-parser.add_argument("--multi_thread_problem", action="store_true", default=False)
+parser.add_argument("--nb_threads", type=int, default=-1)
 
 parser.add_argument("--nb_gpts", type=int, default=5)
 
@@ -125,7 +124,7 @@ if args.result_dir is None:
 
 default_args = {
     "model": "37M",
-    "batch_size": 100,
+    "batch_size": 25,
     "nb_train_samples": 100000,
     "nb_test_samples": 10000,
 }
@@ -240,17 +239,22 @@ if args.problem == "sky":
         nb_birds=args.sky_nb_birds,
         nb_iterations=args.sky_nb_iterations,
         speed=args.sky_speed,
+        max_nb_cached_chunks=args.nb_train_samples // 100,
+        chunk_size=100,
+        nb_threads=args.nb_threads,
     )
     back_accuracy = False
 elif args.problem == "grids":
-    problem = grids.Grids(device=device)
+    problem = grids.Grids(
+        device=device,
+        max_nb_cached_chunks=args.nb_train_samples // 100,
+        chunk_size=100,
+        nb_threads=args.nb_threads,
+    )
     back_accuracy = True
 else:
     raise ValueError
 
-if args.multi_thread_problem:
-    problem = MultiThreadProblem(problem, args.nb_train_samples, chunk_size=1000)
-
 quiz_machine = quiz_machine.QuizMachine(
     problem=problem,
     nb_train_samples=args.nb_train_samples,
@@ -387,8 +391,13 @@ def run_tests(model, quiz_machine, deterministic_synthesis):
 ######################################################################
 
 
+def standard_validity(logproba):
+    l = logproba.sort(dim=-1).values
+    return logical_and(l[0] < math.log(0.5), l[1] > math.log(0.95))
+
+
 def valid_c_quizzes(recorded, criteria):
-    result = [q[criteria(c)] for q, c in recorded]
+    result = [q[criteria(lp)] for q, lp in recorded]
     return torch.cat(result, dim=0) if len(result) > 0 else torch.tensor([])
 
 
@@ -400,6 +409,80 @@ def create_c_quizzes(
     quiz_machine,
     nb_for_train=1000,
     nb_for_test=100,
+):
+    quizzes_and_logproba_records = []
+
+    nb_to_create = nb_for_train + nb_for_test
+
+    # ------------------------------------------------------------
+
+    file_name = os.path.join(args.result_dir, f"culture_c_quiz_{n_epoch:04d}_logp.dat")
+
+    with open(file_name, "w") as logp_file:
+        while (
+            valid_c_quizzes(quizzes_and_logproba_records, standard_validity).size(0)
+            < nb_to_create
+        ):
+            # Select a model at random to generate the new quizzes
+
+            model_for_generation = models[torch.randint(len(models), (1,))]
+
+            c_quizzes = quiz_machine.generate_quizzes(
+                nb_to_create,
+                model_for_generation=model_for_generation,
+                temperature=args.generation_temperature,
+            )
+
+            c_quizzes = c_quizzes[quiz_machine.non_trivial(c_quizzes)]
+
+            if c_quizzes.size(0) > 0:
+                logproba = c_quizzes.new(c_quizzes.size(0), len(models))
+                for q, l in zip(
+                    c_quizzes.split(args.batch_size), logits.split(args.batch_size)
+                ):
+                    for model in models:
+                        l[model.id] = F.cross_entropy(model(q))
+
+                for l in logproba:
+                    s = " ".join([str(x.item()) for x in l])
+                    logp_file.write(s + "\n")
+
+                quizzes_and_logproba_records.append((c_quizzes, logproba))
+
+            nb_validated = valid_c_quizzes(
+                quizzes_and_logproba_records, standard_validity
+            ).size(0)
+
+            log_string(
+                f"keep c_quizzes model {model_for_generation.id} nb_accumulated {nb_validated} / {nb_to_create}"
+            )
+
+    # store the new c_quizzes which have been validated
+
+    new_c_quizzes = valid_c_quizzes(quizzes_and_logproba_records, standard_validity)
+
+    quiz_machine.reverse_random_half_in_place(new_c_quizzes)
+
+    quiz_machine.store_c_quizzes(new_c_quizzes[:nb_for_train], for_train=True)
+    quiz_machine.store_c_quizzes(new_c_quizzes[nb_for_train:], for_train=False)
+
+    # save a bunch of images to investigate what quizzes with a
+    # certain nb of correct predictions look like
+
+    q = new_c_quizzes[:72]
+
+    if q.size(0) > 0:
+        quiz_machine.save_quizzes(args.result_dir, f"culture_c_quiz_{n_epoch:04d}", q)
+
+
+######################################################################
+
+
+def create_c_quizzes_(
+    models,
+    quiz_machine,
+    nb_for_train=1000,
+    nb_for_test=100,
 ):
     quizzes_and_nb_correct_records = []
 
@@ -428,6 +511,14 @@ def create_c_quizzes(
                 temperature=args.generation_temperature,
             )
 
+            # if args.prediction_correctness:
+
+            # else:
+            # logproba = quiz_machine.new(quiz_machine.size(0), len(models))
+            # for q,l in zip(quizzes.split(args.batch_size), logits.split(args.batch_size)):
+            # for model in models:
+            # l[...] = F.cross_entropy(model(q))
+
             c_quizzes = c_quizzes[quiz_machine.non_trivial(c_quizzes)]
 
             if c_quizzes.size(0) > 0:
index a49634d..eceb904 100755 (executable)
@@ -9,14 +9,24 @@ import threading, queue, torch, tqdm
 
 
 class Problem:
+    def __init__(self, max_nb_cached_chunks=None, chunk_size=None, nb_threads=-1):
+        if nb_threads > 0:
+            self.chunk_size = chunk_size
+            self.queue = queue.Queue(maxsize=max_nb_cached_chunks)
+            for _ in range(nb_threads):
+                threading.Thread(target=self.fill_cache, daemon=True).start()
+            self.rest = None
+        else:
+            self.queue = None
+
     def nb_token_values(self):
         pass
 
     def trivial_prompts_and_answers(self, prompts, answers):
         pass
 
-    # returns two tensors nb x D and nb x D'
-    def generate_prompts_and_answers(self, nb):
+    # The one to implement, returns two tensors nb x D and nb x D'
+    def generate_prompts_and_answers_(self, nb):
         pass
 
     # save a file to vizualize quizzes, you can save a txt or png file
@@ -31,49 +41,16 @@ class Problem:
     ):
         pass
 
-
-class MultiThreadProblem:
-    def __init__(self, problem, max_nb_cached_chunks, chunk_size, nb_threads=1):
-        self.problem = problem
-        self.chunk_size = chunk_size
-        self.queue = queue.Queue(maxsize=max_nb_cached_chunks)
-        for _ in range(nb_threads):
-            threading.Thread(target=self.fill_cache, daemon=True).start()
-        self.rest = None
-
-    def nb_token_values(self):
-        return self.problem.nb_token_values()
-
-    def save_quizzes(
-        self,
-        result_dir,
-        filename_prefix,
-        prompts,
-        answers,
-        predicted_prompts=None,
-        predicted_answers=None,
-    ):
-        self.problem.save_quizzes(
-            result_dir,
-            filename_prefix,
-            prompts,
-            answers,
-            predicted_prompts=None,
-            predicted_answers=None,
-        )
-
     def fill_cache(self):
         while True:
-            prompts, answers = self.problem.generate_prompts_and_answers(
-                self.chunk_size
-            )
+            prompts, answers = self.generate_prompts_and_answers_(self.chunk_size)
 
             self.queue.put((prompts.to("cpu"), answers.to("cpu")), block=True)
 
-    def trivial_prompts_and_answers(self, prompts, answers):
-        return self.problem.trivial_prompts_and_answers(prompts, answers)
-
     def generate_prompts_and_answers(self, nb):
+        if self.queue is None:
+            return self.generate_prompts_and_answers_(nb)
+
         if self.rest is not None:
             prompts, answers = rest
         else:
diff --git a/sky.py b/sky.py
index ed440d3..1768a81 100755 (executable)
--- a/sky.py
+++ b/sky.py
@@ -50,7 +50,11 @@ class Sky(problem.Problem):
         speed=2,
         nb_iterations=2,
         avoid_collision=True,
+        max_nb_cached_chunks=None,
+        chunk_size=None,
+        nb_threads=-1,
     ):
+        super().__init__(max_nb_cached_chunks, chunk_size, nb_threads)
         self.height = height
         self.width = width
         self.nb_birds = nb_birds