int front_size = _nb_vertices, pred_front_size;
do {
- // We set the iteration field of all vertex with incoming edges to
- // the current iteration value
+ // We set the last_change field of all the vertices with incoming
+ // edges to the current iteration value
for(int f = 0; f < front_size; f++) {
v = _front[f];
for(e = v->leaving_edges; e; e = e->next_leaving_edge) {
pred_front_size = front_size;
front_size = 0;
- // We remove all the vertices without incoming edge
+ // We keep all the vertices with incoming nodes
for(int f = 0; f < pred_front_size; f++) {
v = _front[f];
if(v->last_change == iteration) {
}
// This method does not change the edge occupation. It only set
-// properly for every vertex the fields distance_from_source and
+// properly, for every vertex, the fields distance_from_source and
// pred_edge_toward_source.
void MTPGraph::find_shortest_path() {
// Put back the graph in its original state (i.e. invert edges which
// have been inverted in the process)
for(int k = 0; k < _nb_edges; k++) {
- Edge *e = _edges + k;
+ e = _edges + k;
if(e->occupied) { e->invert(); }
}
}
int nb_choices = 0;
for(f = e->terminal_vertex->leaving_edges; f; f = f->next_leaving_edge) {
if(f->occupied) { nb_choices++; next = f; }
- if(nb_choices == 0) {
- cerr << "retrieve_one_path: Non-sink end point." << endl;
- abort();
- }
- if(nb_choices > 1) {
- cerr << "retrieve_one_path: Non node-disjoint paths." << endl;
- abort();
- }
}
+
+#ifdef DEBUG
+ if(nb_choices == 0) {
+ cerr << "retrieve_one_path: Non-sink end point." << endl;
+ abort();
+ }
+ if(nb_choices > 1) {
+ cerr << "retrieve_one_path: Non node-disjoint paths." << endl;
+ abort();
+ }
+#endif
+
e = next;
}