def masked_inplace_autoregression(
model, batch_size, input, ar_mask, forbidden_tokens=None, device=torch.device("cpu")
):
- for input, ar_mask in zip(input.split(batch_size), ar_mask.split(batch_size)):
+ for input, ar_mask in tqdm.tqdm(
+ zip(input.split(batch_size), ar_mask.split(batch_size)),
+ dynamic_ncols=True,
+ desc="autoregression",
+ total=input.size(0) // batch_size,
+ ):
i = (ar_mask.sum(0) > 0).nonzero()
if i.min() > 0:
model(
def generate_snake_sequences(
- nb, height, width, nb_colors, length, device=torch.device("cpu")
+ nb, height, width, nb_colors, length, prompt_length, device=torch.device("cpu")
):
worlds = torch.randint(nb_colors, (nb, height, width), device=device)
nb_prior_visits = torch.zeros(nb, height, width, device=device)
sequences_prior_visits[:, 2 * l] = nb_prior_visits[
i, snake_position[:, 0], snake_position[:, 1]
]
- nb_prior_visits[i, snake_position[:, 0], snake_position[:, 1]] += 1
+ if l < prompt_length:
+ nb_prior_visits[i, snake_position[:, 0], snake_position[:, 1]] += 1
sequences[:, 2 * l + 1] = snake_direction
# nb x 2
# exit(0)
+def snake_solver(input, ar_mask):
+ for n in range(input.size(0)):
+ i, j, memory = 0, 0, {}
+ # print(input[n])
+ # print(ar_mask[n])
+ for l in range(input.size(1) // 2):
+ if ar_mask[n, 2 * l] == 1:
+ if memory.get((i, j)) is None:
+ input[n, 2 * l] = -1
+ else:
+ input[n, 2 * l] = memory[(i, j)]
+ else:
+ # print(f'@3 {memory=}')
+ if memory.get((i, j)) is None:
+ memory[(i, j)] = input[n, 2 * l]
+ else:
+ assert memory[(i, j)] == input[n, 2 * l], f"n={n} l={l}"
+ # print(f'@1 {i=} {j=}')
+ d = input[n, 2 * l + 1].item()
+ i += (d + 1) % 2 * (d - 1)
+ j += d % 2 * (d - 2)
+ # print(f'@2 {i=} {j=}')
+
+
class TaskSnake(Task):
def __init__(
self,
width,
nb_colors,
length,
+ prompt_length,
device=torch.device("cpu"),
):
self.batch_size = batch_size
self.height = height
self.width = width
self.device = device
+ self.prompt_length = prompt_length
self.train_input, self.train_prior_visits = generate_snake_sequences(
- nb_train_samples, height, width, nb_colors, length, self.device
+ nb_train_samples,
+ height,
+ width,
+ nb_colors,
+ length,
+ prompt_length,
+ self.device,
)
self.test_input, self.test_prior_visits = generate_snake_sequences(
- nb_test_samples, height, width, nb_colors, length, self.device
+ nb_test_samples,
+ height,
+ width,
+ nb_colors,
+ length,
+ prompt_length,
+ self.device,
)
self.nb_codes = max(self.train_input.max(), self.test_input.max()) + 1
def compute_nb_correct(input, prior_visits):
result = input.clone()
i = torch.arange(result.size(1), device=result.device)[None, :]
- ar_mask = torch.logical_and(i >= i.size(0) // 2, i % 2 == 0).long()
+ ar_mask = (
+ torch.logical_and(i >= self.prompt_length * 2, i % 2 == 0)
+ .long()
+ .expand_as(result)
+ )
result *= 1 - ar_mask
+
+ # snake_solver(result,ar_mask)
+
masked_inplace_autoregression(
model, self.batch_size, result, ar_mask, device=self.device
)
- nb_total = (
- (prior_visits > 0) * ar_mask
- ).sum()
+ nb_total = ((prior_visits > 0) * ar_mask).sum()
nb_correct = (
(result == input).long() * (prior_visits > 0) * ar_mask
return nb_total, nb_correct
- train_nb_total, train_nb_correct = compute_nb_correct(
- self.train_input, self.train_prior_visits
- )
+ # train_nb_total, train_nb_correct = compute_nb_correct(
+ # self.train_input, self.train_prior_visits
+ # )
- log_string(
- f"accuracy_train nb_total {train_nb_total} nb_correct {train_nb_correct} accuracy {(100.0*train_nb_correct)/train_nb_total:.02f}%"
- )
+ # log_string(
+ # f"accuracy_train nb_total {train_nb_total} nb_correct {train_nb_correct} accuracy {(100.0*train_nb_correct)/train_nb_total:.02f}%"
+ # )
test_nb_total, test_nb_correct = compute_nb_correct(
- self.test_input, self.test_prior_visits
+ self.test_input[:1000], self.test_prior_visits[:1000]
)
log_string(
width=args.snake_width,
nb_colors=args.snake_nb_colors,
length=args.snake_length,
+ prompt_length=args.snake_length // 2,
device=device,
)