f_X[i1, j1] = c[-1]
def task_count(self, A, f_A, B, f_B):
+ N = torch.randint(4, (1,)) + 2
+ c = torch.randperm(len(self.colors) - 1)[:N] + 1
+
+ for X, f_X in [(A, f_A), (B, f_B)]:
+
+ def contact(i, j, q):
+ nq, nq_diag = 0, 0
+ no = 0
+
+ for ii, jj in [
+ (i - 1, j - 1),
+ (i - 1, j),
+ (i - 1, j + 1),
+ (i, j - 1),
+ (i, j + 1),
+ (i + 1, j - 1),
+ (i + 1, j),
+ (i + 1, j + 1),
+ ]:
+ if ii >= 0 and ii < self.height and jj >= 0 and jj < self.width:
+ if X[ii, jj] != 0 and X[ii, jj] != q:
+ no += 1
+
+ for ii, jj in [
+ (i - 1, j - 1),
+ (i - 1, j + 1),
+ (i + 1, j - 1),
+ (i + 1, j + 1),
+ ]:
+ if ii >= 0 and ii < self.height and jj >= 0 and jj < self.width:
+ if X[ii, jj] == q and X[i, jj] != q and X[ii, j] != q:
+ nq_diag += 1
+
+ for ii, jj in [(i - 1, j), (i, j - 1), (i, j + 1), (i + 1, j)]:
+ if ii >= 0 and ii < self.height and jj >= 0 and jj < self.width:
+ if X[ii, jj] == q:
+ nq += 1
+
+ return no, nq, nq_diag
+
+ nb = torch.zeros(N, dtype=torch.int64)
+ q = torch.randint(N, (self.height * self.width,))
+ k = torch.randperm(self.height * self.width)
+ for p in range(self.height * self.width):
+ i, j = k[p] % self.height, k[p] // self.height
+ no, nq, nq_diag = contact(i, j, c[q[p]])
+ if no == 0 and nq_diag == 0:
+ if nq == 0:
+ if nb[q[p]] < self.width:
+ X[i, j] = c[q[p]]
+ nb[q[p]] += 1
+ if nq == 1:
+ X[i, j] = c[q[p]]
+
+ for n in range(N):
+ for j in range(nb[n]):
+ f_X[n, j] = c[n]
+
+ def task_count_(self, A, f_A, B, f_B):
N = torch.randint(3, (1,)) + 1
c = torch.randperm(len(self.colors) - 1)[:N] + 1
for X, f_X in [(A, f_A), (B, f_B)]: