--- /dev/null
+#!/usr/bin/env python
+
+# Any copyright is dedicated to the Public Domain.
+# https://creativecommons.org/publicdomain/zero/1.0/
+
+# Written by Francois Fleuret <francois@fleuret.org>
+
+import os, sys
+import torch, torchvision
+from torch import nn
+
+lr, nb_epochs, batch_size = 2e-3, 50, 100
+
+data_dir = os.environ.get("PYTORCH_DATA_DIR") or "./data/"
+
+device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
+
+######################################################################
+
+train_set = torchvision.datasets.MNIST(root=data_dir, train=True, download=True)
+train_input = train_set.data.view(-1, 1, 28, 28).float()
+train_targets = train_set.targets
+
+test_set = torchvision.datasets.MNIST(root=data_dir, train=False, download=True)
+test_input = test_set.data.view(-1, 1, 28, 28).float()
+test_targets = test_set.targets
+
+train_input, train_targets = train_input.to(device), train_targets.to(device)
+test_input, test_targets = test_input.to(device), test_targets.to(device)
+
+mu, std = train_input.mean(), train_input.std()
+
+train_input.sub_(mu).div_(std)
+test_input.sub_(mu).div_(std)
+
+######################################################################
+
+
+class QLinear(nn.Module):
+ def __init__(self, dim_in, dim_out):
+ super().__init__()
+ self.w = nn.Parameter(torch.randn(dim_out, dim_in))
+ self.b = nn.Parameter(torch.randn(dim_out) * 1e-1)
+
+ def quantize(self, z):
+ epsilon = 1e-3
+ zr = z / (z.abs().mean() + epsilon)
+ zq = -(zr <= -0.5).long() + (zr >= 0.5).long()
+ if self.training:
+ return zq + z - z.detach()
+ else:
+ return zq.float()
+
+ def forward(self, x):
+ return x @ self.quantize(self.w).t() + self.quantize(self.b)
+
+
+######################################################################
+
+for nb_hidden in [16, 32, 64, 128, 256, 512, 1024]:
+ for linear_layer in [nn.Linear, QLinear]:
+ model = nn.Sequential(
+ nn.Flatten(),
+ linear_layer(784, nb_hidden),
+ nn.ReLU(),
+ linear_layer(nb_hidden, 10),
+ ).to(device)
+
+ nb_parameters = sum(p.numel() for p in model.parameters())
+
+ print(f"nb_parameters {nb_parameters}")
+
+ optimizer = torch.optim.Adam(model.parameters(), lr=lr)
+
+ ######################################################################
+
+ for k in range(nb_epochs):
+ ############################################
+ # Train
+
+ model.train()
+
+ acc_train_loss = 0.0
+
+ for input, targets in zip(
+ train_input.split(batch_size), train_targets.split(batch_size)
+ ):
+ output = model(input)
+ loss = torch.nn.functional.cross_entropy(output, targets)
+ acc_train_loss += loss.item() * input.size(0)
+
+ optimizer.zero_grad()
+ loss.backward()
+ optimizer.step()
+
+ ############################################
+ # Test
+
+ model.eval()
+
+ nb_test_errors = 0
+ for input, targets in zip(
+ test_input.split(batch_size), test_targets.split(batch_size)
+ ):
+ wta = model(input).argmax(1)
+ nb_test_errors += (wta != targets).long().sum()
+ test_error = nb_test_errors / test_input.size(0)
+
+ if (k + 1) % 10 == 0:
+ print(
+ f"loss {k+1} {acc_train_loss/train_input.size(0)} {test_error*100:.02f}%"
+ )
+ sys.stdout.flush()
+
+ ######################################################################
+
+ print(
+ f"final_loss {nb_hidden} {linear_layer} {acc_train_loss/train_input.size(0)} {test_error*100} %"
+ )
+ sys.stdout.flush()