from torch.nn import functional as F
import ffutils
-import mygpt, tasks, problems
+import mygpt, tasks
######################################################################
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
)
-parser.add_argument("--task", type=str, default="world", help="world")
-
parser.add_argument("--log_filename", type=str, default="train.log", help=" ")
parser.add_argument("--result_dir", type=str, default=None)
args = parser.parse_args()
if args.result_dir is None:
- args.result_dir = f"results_{args.task}"
+ args.result_dir = f"results_culture"
######################################################################
-default_task_args = {
- "world": {
- "model": "37M",
- "batch_size": 100,
- "nb_train_samples": 250000,
- "nb_test_samples": 10000,
- },
+default_args = {
+ "model": "37M",
+ "batch_size": 100,
+ "nb_train_samples": 250000,
+ "nb_test_samples": 10000,
}
-if args.task in default_task_args:
- for k, v in default_task_args[args.task].items():
- if getattr(args, k) is None:
- setattr(args, k, v)
+for k, v in default_args.items():
+ if getattr(args, k) is None:
+ setattr(args, k, v)
######################################################################
assert args.nb_train_samples % args.batch_size == 0
assert args.nb_test_samples % args.batch_size == 0
-if args.task == "file":
- assert (
- args.filetask_train_file is not None and args.filetask_test_file is not None
- ), "You have to specify the task train and test files"
- task = tasks.TaskFromFile(
- args.filetask_train_file,
- args.filetask_test_file,
- nb_train_samples=args.nb_train_samples,
- nb_test_samples=args.nb_test_samples,
- batch_size=args.physical_batch_size,
- shuffle=True,
- device=device,
- )
- args.max_percents_of_test_in_train = 0
-
-elif args.task == "byheart":
- task = tasks.SandBox(
- problem=problems.ProblemByHeart(separation=args.byheart_separation),
- nb_train_samples=args.nb_train_samples,
- nb_test_samples=args.nb_test_samples,
- batch_size=args.physical_batch_size,
- logger=log_string,
- device=device,
- )
- args.max_percents_of_test_in_train = -1
-
-elif args.task == "world":
- task = tasks.World(
- nb_train_samples=args.nb_train_samples,
- nb_test_samples=args.nb_test_samples,
- batch_size=args.physical_batch_size,
- result_dir=args.result_dir,
- logger=log_string,
- device=device,
- )
- args.max_percents_of_test_in_train = -1
-
-elif args.task == "learnop":
- task = tasks.SandBox(
- problem=problems.ProblemLearnOperator(),
- nb_train_samples=args.nb_train_samples,
- nb_test_samples=args.nb_test_samples,
- batch_size=args.physical_batch_size,
- logger=log_string,
- device=device,
- )
-
-
-elif args.task == "guessop":
- task = tasks.SandBox(
- problem=problems.ProblemGuessOperator(),
- nb_train_samples=args.nb_train_samples,
- nb_test_samples=args.nb_test_samples,
- batch_size=args.physical_batch_size,
- logger=log_string,
- device=device,
- )
-
-
-elif args.task == "twotargets":
- task = tasks.SandBox(
- problem=problems.ProblemTwoTargets(),
- nb_train_samples=args.nb_train_samples,
- nb_test_samples=args.nb_test_samples,
- batch_size=args.physical_batch_size,
- logger=log_string,
- device=device,
- )
-
-elif args.task == "memory":
- task = tasks.SandBox(
- problem=problems.ProblemMemory(),
- nb_train_samples=args.nb_train_samples,
- nb_test_samples=args.nb_test_samples,
- batch_size=args.physical_batch_size,
- logger=log_string,
- device=device,
- )
-
-elif args.task == "mixing":
- task = tasks.SandBox(
- problem=problems.ProblemMixing(
- hard=args.mixing_hard, random_start=not args.mixing_deterministic_start
- ),
- nb_train_samples=args.nb_train_samples,
- nb_test_samples=args.nb_test_samples,
- batch_size=args.physical_batch_size,
- logger=log_string,
- device=device,
- )
-
-elif args.task == "addition":
- task = tasks.SandBox(
- problem=problems.ProblemAddition(),
- nb_train_samples=args.nb_train_samples,
- nb_test_samples=args.nb_test_samples,
- batch_size=args.physical_batch_size,
- logger=log_string,
- device=device,
- )
-
-elif args.task == "picoclvr":
- task = tasks.PicoCLVR(
- nb_train_samples=args.nb_train_samples,
- nb_test_samples=args.nb_test_samples,
- batch_size=args.physical_batch_size,
- height=args.picoclvr_height,
- width=args.picoclvr_width,
- nb_colors=args.picoclvr_nb_colors,
- logger=log_string,
- device=device,
- pruner_train=picoclvr_pruner_train,
- pruner_eval=picoclvr_pruner_eval,
- )
-
-elif args.task == "mnist":
- task = tasks.MNIST(
- nb_train_samples=args.nb_train_samples,
- nb_test_samples=args.nb_test_samples,
- batch_size=args.physical_batch_size,
- device=device,
- )
-
-elif args.task == "maze":
- task = tasks.Maze(
- nb_train_samples=args.nb_train_samples,
- nb_test_samples=args.nb_test_samples,
- batch_size=args.physical_batch_size,
- height=args.maze_height,
- width=args.maze_width,
- nb_walls=args.maze_nb_walls,
- device="cpu",
- )
-
-elif args.task == "snake":
- task = tasks.Snake(
- nb_train_samples=args.nb_train_samples,
- nb_test_samples=args.nb_test_samples,
- batch_size=args.physical_batch_size,
- height=args.snake_height,
- width=args.snake_width,
- nb_colors=args.snake_nb_colors,
- length=args.snake_length,
- prompt_length=args.snake_length // 2,
- device=device,
- )
-
-elif args.task == "stack":
- task = tasks.Stack(
- nb_train_samples=args.nb_train_samples,
- nb_test_samples=args.nb_test_samples,
- batch_size=args.physical_batch_size,
- logger=log_string,
- nb_steps=args.stack_nb_steps,
- nb_stacks=args.stack_nb_stacks,
- nb_digits=args.stack_nb_digits,
- fraction_values_for_train=args.stack_fraction_values_for_train,
- device=device,
- )
-
-elif args.task == "expr":
- task = tasks.Expr(
- nb_train_samples=args.nb_train_samples,
- nb_test_samples=args.nb_test_samples,
- nb_variables=args.expr_nb_variables,
- sequence_length=args.expr_sequence_length,
- operand_max=args.expr_operand_max,
- result_max=args.expr_result_max,
- batch_size=args.physical_batch_size,
- device=device,
- )
-
-elif args.task == "rpl":
- task = tasks.RPL(
- nb_train_samples=args.nb_train_samples,
- nb_test_samples=args.nb_test_samples,
- batch_size=args.physical_batch_size,
- nb_starting_values=args.rpl_nb_starting_values,
- max_input=args.rpl_max_input,
- prog_len=args.rpl_prog_len,
- nb_runs=args.rpl_nb_runs,
- no_prog=args.rpl_no_prog,
- logger=log_string,
- device=device,
- )
-
-elif args.task == "grid":
- task = tasks.Grid(
- nb_train_samples=args.nb_train_samples,
- nb_test_samples=args.nb_test_samples,
- batch_size=args.physical_batch_size,
- size=args.grid_size,
- fraction_play=args.grid_fraction_play,
- logger=log_string,
- device=device,
- )
-
-elif args.task == "qmlp":
- task = tasks.QMLP(
- nb_train_samples=args.nb_train_samples,
- nb_test_samples=args.nb_test_samples,
- batch_size=args.physical_batch_size,
- result_dir=args.result_dir,
- logger=log_string,
- device=device,
- )
-
-elif args.task == "greed":
- task = tasks.Greed(
- nb_train_samples=args.nb_train_samples,
- nb_test_samples=args.nb_test_samples,
- batch_size=args.physical_batch_size,
- height=args.greed_height,
- width=args.greed_width,
- T=args.greed_T,
- nb_walls=args.greed_nb_walls,
- nb_coins=args.greed_nb_coins,
- logger=log_string,
- device=device,
- )
-
-else:
- raise ValueError(f"Unknown task {args.task}")
+task = tasks.World(
+ nb_train_samples=args.nb_train_samples,
+ nb_test_samples=args.nb_test_samples,
+ batch_size=args.physical_batch_size,
+ result_dir=args.result_dir,
+ logger=log_string,
+ device=device,
+)
######################################################################
nb_new_quizzes_for_test = 10
for n_epoch in range(args.nb_epochs):
+ a = [(model.id, model.main_test_accuracy) for model in models]
+ a.sort(key=lambda p: p[0])
+ log_string(f"current accuracies {a}")
+
# select the model with lowest accuracy
models.sort(key=lambda model: model.main_test_accuracy)
model = models[0]
nb_for_test=nb_new_quizzes_for_test,
)
+ # We update everyone
+ for model in models:
+ run_tests(model, task, deterministic_synthesis=False)
+
######################################################################
colors = torch.tensor(
[
[255, 255, 255],
- [255, 0, 0],
- [0, 128, 0],
[0, 0, 255],
- [255, 200, 0],
+ [0, 0, 255],
+ [0, 192, 0],
+ [0, 255, 0],
+ [0, 255, 127],
+ [0, 255, 255],
+ [0, 255, 255],
+ [30, 144, 255],
+ [64, 224, 208],
+ [65, 105, 225],
+ [75, 0, 130],
+ [106, 90, 205],
+ [128, 0, 128],
+ [135, 206, 235],
[192, 192, 192],
+ [220, 20, 60],
+ [250, 128, 114],
+ [255, 0, 0],
+ [255, 0, 255],
+ [255, 105, 180],
+ [255, 127, 80],
+ [255, 165, 0],
+ [255, 182, 193],
+ [255, 20, 147],
+ [255, 200, 0],
]
)
token_background = 0
first_bird_token = 1
-nb_bird_tokens = len(colors) - 1
+nb_bird_tokens = colors.size(0) - 1
token_forward = first_bird_token + nb_bird_tokens
token_backward = token_forward + 1
-token2char = "_" + "".join([str(n) for n in range(len(colors) - 1)]) + "><"
+token2char = "_" + "".join([chr(ord("A") + n) for n in range(len(colors) - 1)]) + "><"
def generate(
nb,
height,
width,
- max_nb_obj=2,
+ nb_birds=2,
nb_iterations=2,
):
pairs = []
f_end = torch.zeros(height, width, dtype=torch.int64)
n = torch.arange(f_start.size(0))
- nb_birds = torch.randint(max_nb_obj, (1,)).item() + 1
for c in (
(torch.randperm(nb_bird_tokens) + first_bird_token)[:nb_birds].sort().values
):
x = x[:, :, :, None, :, None].expand(-1, -1, -1, upscale, -1, upscale)
x = x.reshape(s[0], s[1], s[2] * upscale, s[3] * upscale)
+ x[:, :, :, torch.arange(0, x.size(3), upscale)] = 0
+ x[:, :, torch.arange(0, x.size(2), upscale), :] = 0
+ x = x[:, :, 1:, 1:]
+
for n in range(m.size(0)):
for i in range(m.size(1)):
for j in range(m.size(2)):
return x
- direction_symbol = torch.full((direction.size(0), height * upscale, upscale), 0)
+ direction_symbol = torch.full((direction.size(0), height * upscale - 1, upscale), 0)
direction_symbol = colors[direction_symbol].permute(0, 3, 1, 2)
- separator = torch.full((direction.size(0), 3, height * upscale, 1), 0)
+ separator = torch.full((direction.size(0), 3, height * upscale - 1, 1), 0)
for n in range(direction_symbol.size(0)):
if direction[n] == token_forward:
height, width = 6, 8
start_time = time.perf_counter()
- seq = generate(nb=90, height=height, width=width, max_nb_obj=3)
+ seq = generate(nb=90, height=height, width=width)
delay = time.perf_counter() - start_time
print(f"{seq.size(0)/delay:02f} samples/s")
print(img.size())
torchvision.utils.save_image(
- img.float() / 255.0, "/tmp/world.png", nrow=6, padding=4
+ img.float() / 255.0, "/tmp/world.png", nrow=6, padding=6, pad_value=0
)