nn.Linear(args.dim_model, 4),
).to(device)
+ print(f"{args.nb_epochs=}")
+
for n_epoch in range(args.nb_epochs):
+ print(f"{n_epoch=}")
learning_rate = learning_rate_schedule[n_epoch]
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
f"diff_ce {n_epoch} train {acc_train_loss/nb_train_samples} test {acc_test_loss/nb_test_samples}"
)
+ # -------------------
+ input, targets = next(task.policy_batches(split="test"))
+ output_gpt = gpt(mygpt.BracketedSequence(input), with_readout=False).x
+ output = model(output_gpt)
+ losses = (-output.log_softmax(-1) * targets + targets.xlogy(targets)).sum(-1)
+ losses = losses / losses.max()
+ print(f"{input.size()=} {losses.size()=} {losses.min()=} {losses.max()=}")
+ losses = losses * (input == 0)
+ losses = losses.reshape(-1, args.maze_height, args.maze_width)
+ input = input.reshape(-1, args.maze_height, args.maze_width)
+ maze.save_image(
+ os.path.join(args.result_dir, f"oneshot_{n_epoch:04d}.png"),
+ mazes=input,
+ score_paths=losses,
+ )
+ # -------------------
+
gpt.train(t)
_, predicted_paths = self.seq2map(result)
maze.save_image(
os.path.join(args.result_dir, f"result_{n_epoch:04d}.png"),
- mazes,
- paths,
- predicted_paths,
- maze.path_correctness(mazes, predicted_paths),
+ mazes=mazes,
+ target_paths=paths,
+ predicted_paths=predicted_paths,
+ path_correct=maze.path_correctness(mazes, predicted_paths),
)
model.train(t)
######################################################################
-def save_image(name, mazes, target_paths, predicted_paths=None, path_correct=None):
- mazes, target_paths = mazes.cpu(), target_paths.cpu()
-
+def save_image(
+ name,
+ mazes,
+ target_paths=None,
+ predicted_paths=None,
+ score_paths=None,
+ path_correct=None,
+):
colors = torch.tensor(
[
[255, 255, 255], # empty
]
)
+ mazes = mazes.cpu()
+
mazes = colors[mazes.reshape(-1)].reshape(mazes.size() + (-1,)).permute(0, 3, 1, 2)
- target_paths = (
- colors[target_paths.reshape(-1)]
- .reshape(target_paths.size() + (-1,))
- .permute(0, 3, 1, 2)
- )
- imgs = torch.cat((mazes.unsqueeze(1), target_paths.unsqueeze(1)), 1)
+
+ imgs = mazes.unsqueeze(1)
+
+ if target_paths is not None:
+ target_paths = target_paths.cpu()
+
+ target_paths = (
+ colors[target_paths.reshape(-1)]
+ .reshape(target_paths.size() + (-1,))
+ .permute(0, 3, 1, 2)
+ )
+
+ imgs = torch.cat((imgs, target_paths.unsqueeze(1)), 1)
if predicted_paths is not None:
predicted_paths = predicted_paths.cpu()
)
imgs = torch.cat((imgs, predicted_paths.unsqueeze(1)), 1)
+ if score_paths is not None:
+ score_paths = (score_paths.cpu() * 255.0).long()
+ score_paths = score_paths.unsqueeze(1).expand(-1, 3, -1, -1)
+ imgs = torch.cat((imgs, score_paths.unsqueeze(1)), 1)
+
# NxKxCxHxW
if path_correct is None:
path_correct = torch.zeros(imgs.size(0)) <= 1