class ProblemByheart(Problem):
def __init__(self):
- pass
+ nb_seq, len_prompt, len_result = 100, 5, 5
+ self.seq = torch.randint(10, (nb_seq, len_prompt + 1 + len_result))
+ self.seq[:,len_prompt]=-1
+ def generate_sequences(self, nb):
+ return self.seq[torch.randint(self.seq.size(0), (nb,))]
class SandBox(Task):
def __init__(
self.batch_size = batch_size
+ problems = [ ProblemByheart() ]
+ nb_common_codes = 100
+
def generate_sequences(nb_samples):
problem_indexes = torch.randint(len(problems), (nb_samples,))
nb_samples_per_problem = torch.one_hot(problem_indexes).sum(0)
print(f"{nb_samples_per_problem}")
+ all_seq = []
+ for nb, p in zip(nb_samples_per_problem,problems):
+ all_seq.append(p.generate_sequences(nb_samples_per_problem[nb]))
+ return all_seq
+
+ train_seq = generate_sequences(nb_train_samples)
+ test_seq = generate_sequences(nb_test_samples)
- self.train_input = generate_sequences(nb_train_samples)
- self.test_input = generate_sequences(nb_test_samples)
+ for strain, stest in zip(train_seq, test_seq):
+ s = torch.cat((strain,stest),0)
self.nb_codes = max(self.train_input.max(), self.test_input.max()) + 1
else:
return s
+class DiscreteSampler2d(nn.Module):
+ def __init__(self):
+ super().__init__()
+
+ def forward(self, x):
+ s = (x >= x.max(-3,keepdim=True).values).float()
+
+ if self.training:
+ u = x.softmax(dim=-3)
+ return s + u - u.detach()
+ else:
+ return s
+
def loss_H(binary_logits, h_threshold=1):
p = binary_logits.sigmoid().mean(0)
for input in tqdm.tqdm(train_input.split(batch_size), desc="vqae-train"):
input = input.to(device)
z = encoder(input)
- zq = z if k < 2 else quantizer(z)
+ zq = quantizer(z)
output = decoder(zq)
output = output.reshape(
for input in tqdm.tqdm(test_input.split(batch_size), desc="vqae-test"):
input = input.to(device)
z = encoder(input)
- zq = z if k < 1 else quantizer(z)
+ zq = quantizer(z)
output = decoder(zq)
output = output.reshape(
seq2frame,
) = create_data_and_processors(
25000, 1000,
- nb_epochs=10,
+ nb_epochs=5,
mode="first_last",
nb_steps=20,
)