AddPositionalEncoding(len_max),
)
- # Small embedding initialization
- with torch.no_grad():
- self.embedding[0].weight.normal_(0, 2e-2)
-
trunk_blocks = [ ]
for _ in range(nb_blocks):
self.readout = nn.Linear(in_features = dim_model, out_features = vocabulary_size)
+ with torch.no_grad():
+ for m in self.modules():
+ if isinstance(m, nn.Embedding):
+ m.weight.normal_(mean = 0, std = 2e-2)
+ elif isinstance(m, nn.LayerNorm):
+ m.bias.zero_()
+ m.weight.fill_(1.0)
+
def forward(self, x):
x = F.pad(x, (1, -1))
x = self.embedding(x)