b = torch.arange(input.size(1), device=input.device) > input.size(1) // 2
return b.long()[None, :].expand_as(input)
+ def generate_token_sequences(self, nb):
+ prompts, answers = self.problem.generate_prompts_and_answers(nb)
+ result = []
+
+ for prompt, answer in zip(prompts, answers):
+ if torch.rand(1) < 0.5:
+ a = [torch.tensor([self.token_forward]), prompt, answer]
+ else:
+ a = [torch.tensor([self.token_backward]), answer, prompt]
+
+ result.append(torch.cat(a, dim=0)[None, :])
+
+ return torch.cat(result, dim=0)
+
def __init__(
self,
problem,
):
super().__init__()
+ v = problem.nb_token_values()
+ self.token_forward = v
+ self.token_backward = v + 1
+ self.nb_token_values = v + 2
+
self.problem = problem
self.batch_size = batch_size
self.device = device
self.logger = logger
- self.train_w_quizzes = self.problem.generate_token_sequences(
- nb_train_samples
- ).to(device)
-
- self.test_w_quizzes = self.problem.generate_token_sequences(nb_test_samples).to(
+ self.train_w_quizzes = self.generate_token_sequences(nb_train_samples).to(
device
)
- self.nb_codes = max(self.train_w_quizzes.max(), self.test_w_quizzes.max()) + 1
+ self.test_w_quizzes = self.generate_token_sequences(nb_test_samples).to(device)
self.train_c_quizzes = []
self.test_c_quizzes = []
if result_dir is not None:
- self.problem.save_quizzes(
- self.train_w_quizzes[:72], result_dir, "culture_w_quizzes"
+ self.save_quizzes(
+ result_dir, "culture_w_quizzes", self.train_w_quizzes[:72]
)
+ def save_quizzes(self, result_dir, filename_prefix, quizzes, prediction=False):
+ print(f"DEBUG {quizzes.size()=}")
+ l = (quizzes.size(1) - 1) // 2
+ forward = (quizzes[:, 0] == self.token_forward).long()
+ backward = (quizzes[:, 0] == self.token_backward).long()
+ assert forward.equal(1 - backward)
+ first = quizzes[:, 1 : 1 + l]
+ second = quizzes[:, 1 + l : 1 + 2 * l]
+ prompts = forward[:, None] * first + backward[:, None] * second
+ answers = forward[:, None] * second + backward[:, None] * first
+
+ if prediction:
+ predicted_prompts = backward
+ predicted_answers = forward
+ else:
+ predicted_prompts = None
+ predicted_answers = None
+
+ self.problem.save_quizzes(
+ result_dir,
+ filename_prefix,
+ prompts,
+ answers,
+ predicted_prompts,
+ predicted_answers,
+ )
+
def batches(self, split="train", desc=None):
assert split in {"train", "test"}
if split == "train":
yield batch
def vocabulary_size(self):
- return self.nb_codes
+ return self.nb_token_values
def produce_results(
self, n_epoch, model, result_dir, deterministic_synthesis, nmax=1000
device=self.device,
)
- self.problem.save_quizzes(
- result[:72], result_dir, f"culture_prediction_{n_epoch:04d}_{model.id:02d}"
+ self.save_quizzes(
+ result_dir,
+ f"culture_prediction_{n_epoch:04d}_{model.id:02d}",
+ quizzes=result[:72],
+ prediction=True,
)
return main_test_accuracy
input = self.train_w_quizzes if for_train else self.test_w_quizzes
nb = min(nb, input.size(0))
input[:-nb] = input[nb:].clone()
- input[-nb:] = self.problem.generate_token_sequences(nb).to(self.device)
+ input[-nb:] = self.generate_token_sequences(nb).to(self.device)
def store_c_quizzes(self, new_c_quizzes, for_train=True):
if for_train:
self.test_c_quizzes.append(new_c_quizzes)
def reverse_time(self, c_quizzes):
- token_forward, token_backward = self.problem.direction_tokens()
-
l = (c_quizzes.size(1) - 1) // 2
- direction = c_quizzes[:, l : l + 1]
- direction = self.problem.token_forward * (
- direction == self.problem.token_backward
- ) + self.problem.token_backward * (direction == self.problem.token_forward)
+ direction = c_quizzes[:, 0:1]
+ direction = self.token_forward * (
+ direction == self.token_backward
+ ) + self.token_backward * (direction == self.token_forward)
- return torch.cat([c_quizzes[:, l + 1 :], direction, c_quizzes[:, :l]], dim=1)
+ return torch.cat(
+ [direction, c_quizzes[:, l + 1 :], c_quizzes[:, 1 : l + 1]], dim=1
+ )
def compute_correctness(
self, c_quizzes, models_for_validation, both_directions=True
token_background = 0
first_bird_token = 1
nb_bird_tokens = colors.size(0) - 1
- token_forward = first_bird_token + nb_bird_tokens
- token_backward = token_forward + 1
token2char = (
"_" + "".join([chr(ord("A") + n) for n in range(len(colors) - 1)]) + "><"
)
+ def nb_token_values(self):
+ return len(self.colors)
+
def __init__(
self,
height=6,
self.nb_iterations = nb_iterations
self.avoid_collision = avoid_collision
- def direction_tokens(self):
- return self.token_forward, self.token_backward
-
def generate_frame_sequences(self, nb):
frame_sequences = []
def generate_prompts_and_answers(self, nb):
frame_sequences = self.generate_frame_sequences(nb)
- prompts = frame_sequences[:, : frame_sequences.size(0) // 2].flatten(1)
- answers = frame_sequences[:, frame_sequences.size(0) // 2 :].flatten(1)
+ frame_sequences = torch.cat([x[None] for x in frame_sequences], dim=0)
+ prompts = frame_sequences[:, : frame_sequences.size(1) // 2].flatten(1)
+ answers = frame_sequences[:, frame_sequences.size(1) // 2 :].flatten(1)
return prompts, answers
- def generate_token_sequences(self, nb):
- frame_sequences = self.generate_frame_sequences(nb)
-
- result = []
-
- for frame_sequence in frame_sequences:
- a = []
- if torch.rand(1) < 0.5:
- for frame in frame_sequence:
- if len(a) > 0:
- a.append(torch.tensor([self.token_forward]))
- a.append(frame.flatten())
- else:
- for frame in reversed(frame_sequence):
- if len(a) > 0:
- a.append(torch.tensor([self.token_backward]))
- a.append(frame.flatten())
-
- result.append(torch.cat(a, dim=0)[None, :])
-
- return torch.cat(result, dim=0)
-
######################################################################
def frame2img(self, x, scale=15):
return x
- def seq2img(self, seq, scale=15):
- all = [
- self.frame2img(
- seq[:, : self.height * self.width].reshape(-1, self.height, self.width),
- scale,
+ def seq2str(self, seq):
+ result = []
+ for s in seq:
+ result.append("".join([self.token2char[v] for v in s]))
+ return result
+
+ def save_image(
+ self,
+ result_dir,
+ filename,
+ prompts,
+ answers,
+ predicted_prompts=None,
+ predicted_answers=None,
+ ):
+ if predicted_prompts is None:
+ predicted_prompts = 255
+
+ if predicted_answers is None:
+ predicted_answers = 255
+
+ def add_frame(x, c, margin):
+ y = x.new_full(
+ (x.size(0), x.size(1), x.size(2) + 2 * margin, x.size(3) + 2 * margin),
+ 0,
)
- ]
+ if type(c) is int:
+ y[...] = c
+ else:
+ c = c.long()[:, None]
+ c = c * torch.tensor([192, 192, 192], device=c.device) + (
+ 1 - c
+ ) * torch.tensor([255, 255, 255], device=c.device)
+ y[...] = c[:, :, None, None]
+ y[:, :, margin:-margin, margin:-margin] = x
+ return y
- separator = torch.full((seq.size(0), 3, self.height * scale - 1, 1), 0)
+ margin = 4
- t = self.height * self.width
+ img_prompts = add_frame(self.frame2img(prompts.to("cpu")), 0, 1)
+ img_answers = add_frame(self.frame2img(answers.to("cpu")), 0, 1)
- while t < seq.size(1):
- direction_tokens = seq[:, t]
- t += 1
+ # img_prompts = add_frame(img_prompts, 255, margin)
+ # img_answers = add_frame(img_answers, 255, margin)
- direction_images = self.colors[
- torch.full(
- (direction_tokens.size(0), self.height * scale - 1, scale), 0
- )
- ].permute(0, 3, 1, 2)
-
- for n in range(direction_tokens.size(0)):
- if direction_tokens[n] == self.token_forward:
- for k in range(scale):
- for l in [0, 1]:
- direction_images[
- n,
- :,
- (self.height * scale) // 2 - scale // 2 + k - l,
- 3 + scale // 2 - abs(k - scale // 2),
- ] = 0
- elif direction_tokens[n] == self.token_backward:
- for k in range(scale):
- for l in [0, 1]:
- direction_images[
- n,
- :,
- (self.height * scale) // 2 - scale // 2 + k - l,
- 3 + abs(k - scale // 2),
- ] = 0
- else:
- for k in range(2, scale - 2):
- for l in [0, 1]:
- direction_images[
- n,
- :,
- (self.height * scale) // 2 - scale // 2 + k - l,
- k,
- ] = 0
- direction_images[
- n,
- :,
- (self.height * scale) // 2 - scale // 2 + k - l,
- scale - 1 - k,
- ] = 0
-
- all += [
- separator,
- direction_images,
- separator,
- self.frame2img(
- seq[:, t : t + self.height * self.width].reshape(
- -1, self.height, self.width
- ),
- scale,
- ),
- ]
-
- t += self.height * self.width
-
- return torch.cat(all, dim=3)
+ img_prompts = add_frame(img_prompts, predicted_prompts, margin)
+ img_answers = add_frame(img_answers, predicted_answers, margin)
- def seq2str(self, seq):
- result = []
- for s in seq:
- result.append("".join([self.token2char[v] for v in s]))
- return result
+ separator = img_prompts.new_full(
+ (img_prompts.size(0), img_prompts.size(1), img_prompts.size(2), margin), 255
+ )
+
+ img = torch.cat([img_prompts, img_answers], dim=3)
- def save_image(self, input, result_dir, filename):
- img = self.seq2img(input.to("cpu"))
image_name = os.path.join(result_dir, filename)
- torchvision.utils.save_image(img.float() / 255.0, image_name, nrow=6, padding=4)
+ torchvision.utils.save_image(
+ img.float() / 255.0, image_name, nrow=6, padding=margin * 2, pad_value=1.0
+ )
- def save_quizzes(self, input, result_dir, filename_prefix):
- self.save_image(input, result_dir, filename_prefix + ".png")
+ def save_quizzes(
+ self,
+ result_dir,
+ filename_prefix,
+ prompts,
+ answers,
+ predicted_prompts=None,
+ predicted_answers=None,
+ ):
+ self.save_image(
+ result_dir,
+ filename_prefix + ".png",
+ prompts,
+ answers,
+ predicted_prompts,
+ predicted_answers,
+ )
######################################################################
sky = Sky(height=6, width=8, speed=4, nb_iterations=2)
- start_time = time.perf_counter()
- token_sequences = sky.generate_token_sequences(nb=64)
- delay = time.perf_counter() - start_time
- print(f"{token_sequences.size(0)/delay:02f} seq/s")
+ prompts, answers = sky.generate_prompts_and_answers(4)
+
+ predicted_prompts = torch.rand(prompts.size(0)) < 0.5
+ predicted_answers = torch.rand(answers.size(0)) < 0.5
+
+ sky.save_quizzes(
+ "/tmp", "test", prompts, answers, predicted_prompts, predicted_answers
+ )
+
+ # start_time = time.perf_counter()
+ # token_sequences = sky.generate_token_sequences(nb=64)
+ # delay = time.perf_counter() - start_time
+ # print(f"{token_sequences.size(0)/delay:02f} seq/s")
# print(sky.seq2str(seq[:4]))
# seq = (1 - m) * seq + m * 23
# print(seq.size())
- img = sky.seq2img(token_sequences)
+ # img = sky.seq2img(token_sequences)
# print(img.size())
- torchvision.utils.save_image(
- img.float() / 255.0, "/tmp/world.png", nrow=6, padding=6, pad_value=0
- )
+ # torchvision.utils.save_image(
+ # img.float() / 255.0, "/tmp/world.png", nrow=6, padding=6, pad_value=0
+ # )