self.inputModules = i
self:nestedApply(
function(nnm)
- if #self.node[nnm].succ == 0 then
- error('Input modules must have outgoing edges.')
- end
- if #self.node[nnm].pred > 0 then
- error('Input modules cannot have incoming edges.')
- end
+ assert(#self.node[nnm].succ > 0, 'Input modules must have outgoing edges.')
+ assert(#self.node[nnm].pred == 0, 'Input modules cannot have incoming edges.')
end,
self.inputModules
)
self.outputModules = o
self:nestedApply(
function(nnm)
- if #self.node[nnm].pred == 0 then
- error('Output module must have incoming edges.')
- end
- if #self.node[nnm].succ > 0 then
- error('Output module cannot have outgoing edges.')
- end
+ assert(#self.node[nnm].pred > 0, 'Output module must have incoming edges.')
+ assert(#self.node[nnm].succ == 0, 'Output module cannot have outgoing edges.')
end,
self.outputModules
)
if #pred == 1 then
table.insert(self.node[pred[1]].gradInputSucc, nnm.gradInput)
elseif #pred > 1 then
- if not torch.type(nnm.gradInput) == 'table' then
- error('Should have a table gradInput since it has multiple predecessors')
- end
+ assert(torch.type(nnm.gradInput) == 'table',
+ 'Should have a table gradInput since it has multiple predecessors')
for n = 1, #pred do
table.insert(self.node[node.pred[n]].gradInputSucc, nnm.gradInput[n])
end