from torch import nn
from torch.nn import functional as F
+
def random_var(nb_variables=None, variables=None):
if variables is None:
- return chr(ord('A') + torch.randint(nb_variables, (1,)).item())
+ return chr(ord("A") + torch.randint(nb_variables, (1,)).item())
else:
l = list(variables)
return l[torch.randint(len(l), (1,)).item()]
+
def random_expr(variables, budget):
if budget <= 5:
- op=torch.randint(2, (1,)).item()
+ op = torch.randint(2, (1,)).item()
if op == 0 and len(variables) > 0:
return random_var(variables=variables)
else:
return str(torch.randint(10, (1,)).item())
else:
- op=torch.randint(4, (1,)).item()
+ op = torch.randint(4, (1,)).item()
if op == 0:
- e=random_expr(variables,budget-2)
- if ("+" in e or "-" in e or "*" in e) and (e[0]!="(" or e[-1]!=")"):
- return "("+e+")"
+ e = random_expr(variables, budget - 2)
+ if ("+" in e or "-" in e or "*" in e) and (e[0] != "(" or e[-1] != ")"):
+ return "(" + e + ")"
else:
return e
else:
- b = 2 + torch.randint(budget-5, (1,)).item()
- e1=random_expr(variables,b)
- e2=random_expr(variables,budget-b-1)
+ b = 2 + torch.randint(budget - 5, (1,)).item()
+ e1 = random_expr(variables, b)
+ e2 = random_expr(variables, budget - b - 1)
if op == 1:
- return e1+"+"+e2
+ return e1 + "+" + e2
elif op == 2:
- return e1+"+"+e2
+ return e1 + "+" + e2
elif op == 3:
- return e1+"*"+e2
+ return e1 + "*" + e2
+
def generate_program(nb_variables, length):
s = ""
variables = set()
while len(s) < length:
v = random_var(nb_variables=nb_variables)
- s += v+"="+random_expr(variables,budget = min(20,length-3-len(s)))+";"
+ s += v + "=" + random_expr(variables, budget=min(20, length - 3 - len(s))) + ";"
variables.add(v)
return s, variables
-def generate_sequences(nb, nb_variables = 5, length=20):
- sequences=[]
+
+def generate_sequences(nb, nb_variables=5, length=20):
+ sequences = []
for n in range(nb):
result = None
- while result==None or max(result.values())>100:
- p,v=generate_program(nb_variables, length)
- v=", ".join([ "\""+v+"\": "+v for v in v ])
- ldict={}
- exec(p+"result={"+v+"}",globals(),ldict)
- result=ldict["result"]
-
- k=list(result.keys())
+ while result == None or max(result.values()) > 100:
+ p, v = generate_program(nb_variables, length)
+ v = ", ".join(['"' + v + '": ' + v for v in v])
+ ldict = {}
+ exec(p + "result={" + v + "}", globals(), ldict)
+ result = ldict["result"]
+
+ k = list(result.keys())
k.sort()
- sequences.append(p+" "+";".join([v+":"+str(result[v]) for v in k]))
+ sequences.append(p + " " + ";".join([v + ":" + str(result[v]) for v in k]))
return sequences
+
if __name__ == "__main__":
import time
+
start_time = time.perf_counter()
- sequences=generate_sequences(1000)
+ sequences = generate_sequences(1000)
end_time = time.perf_counter()
for s in sequences[:10]:
print(s)
print(f"{len(sequences) / (end_time - start_time):.02f} samples per second")
-
)
parser.add_argument(
- "--task", type=str, default="picoclvr", help="picoclvr, mnist, maze, snake, stack, expr"
+ "--task",
+ type=str,
+ default="picoclvr",
+ help="picoclvr, mnist, maze, snake, stack, expr",
)
parser.add_argument("--log_filename", type=str, default="train.log", help=" ")
progress_bar_desc="autoregression",
device=torch.device("cpu"),
):
-
batches = zip(input.split(batch_size), ar_mask.split(batch_size))
if progress_bar_desc is not None:
train_sequences = expr.generate_sequences(nb_train_samples)
test_sequences = expr.generate_sequences(nb_test_samples)
- self.char2id = dict([ (c,n) for n,c in enumerate(set("".join(train_sequences + test_sequences))) ])
- self.id2char = dict([ (n,c) for n,c in self.char2id.items() ])
+ self.char2id = dict(
+ [
+ (c, n)
+ for n, c in enumerate(set("".join(train_sequences + test_sequences)))
+ ]
+ )
+ self.id2char = dict([(n, c) for n, c in self.char2id.items()])
len_max = max([len(x) for x in train_sequences + test_sequences])
- self.train_input = torch.cat([torch.tensor([char2id(c) for c in s + " "*(len_max-len(s))] for s in train_sequences)], 0)
- self.test_input = torch.cat([torch.tensor([char2id(c) for c in s + " "*(len_max-len(s))] for s in test_sequences)], 0)
+ self.train_input = torch.cat(
+ [
+ torch.tensor(
+ [char2id(c) for c in s + " " * (len_max - len(s))]
+ for s in train_sequences
+ )
+ ],
+ 0,
+ )
+ self.test_input = torch.cat(
+ [
+ torch.tensor(
+ [char2id(c) for c in s + " " * (len_max - len(s))]
+ for s in test_sequences
+ )
+ ],
+ 0,
+ )
self.nb_codes = max(self.train_input.max(), self.test_input.max()) + 1
def batches(self, split="train", nb_to_use=-1, desc=None):