if __name__ == "__main__":
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
- mazes, paths = create_maze_data(8)
+ mazes, paths, policies = create_maze_data(8)
mazes, paths = mazes.to(device), paths.to(device)
- save_image("test.png", mazes, paths, paths)
+ save_image("test.png", mazes=mazes, target_paths=paths, predicted_paths=paths)
print(path_correctness(mazes, paths))
######################################################################
def slice(self):
return self.x[:, self.first : self.first + self.nb]
+ def complete(self):
+ return self.first == 0 and self.nb == x.size(1)
+
######################################################################
def randw(*d):
return nn.Parameter(torch.randn(*d) / math.sqrt(d[-1]))
- assert causal, "TODO: Switch off the cache when non-causal!!!"
self.causal = causal
self.attention_dropout = attention_dropout
def forward(self, bs_q):
x_q = bs_q.x
+ assert (
+ self.causal or bs_q.complete()
+ ), "Partial evaluation is only possible for causal models"
+
if bs_q.first == 0:
self.cache_k = x_q.new_zeros(
x_q.size(0), self.w_k.size(0), x_q.size(1), self.w_k.size(1)