self.rec_K[:, :, t0:t1] = next_K.flatten(2, 3)
if self.training and self.proba_flashback:
- insert_flash_back(
- self.rec_V,
- V,
- self.rec_K,
- K,
- t0,
- t1,
- CL,
- proba=self.proba_flashback / CL,
- )
+ # insert_flash_back(
+ # self.rec_V,
+ # V,
+ # self.rec_K,
+ # K,
+ # t0,
+ # t1,
+ # CL,
+ # proba=self.proba_flashback / CL,
+ # )
- # n = torch.arange(N, device=X.device)[:, None, None, None]
- # t = torch.arange(t0, t1, device=X.device)[None, None, :, None]
- # dv = torch.arange(DV)[None, None, None, :]
- # dk = torch.arange(DK)[None, None, None, :]
+ n = torch.arange(N, device=X.device)[:, None, None, None]
+ t = torch.arange(t0, t1, device=X.device)[None, None, :, None]
+ dv = torch.arange(DV)[None, None, None, :]
+ dk = torch.arange(DK)[None, None, None, :]
- # u = (
- # torch.rand(N, CH, t1 - t0, 1, device=X.device).mul(t).long() // CL
- # ) * CL
+ u = (
+ torch.rand(N, CH, t1 - t0, 1, device=X.device).mul(t).long() // CL
+ ) * CL
- # src_time = t - u - t0
- # src_head = torch.randint(H, (N, CH, t1 - t0, 1), device=X.device)
+ src_time = t - u - t0
+ src_head = torch.randint(H, (N, CH, t1 - t0, 1), device=X.device)
- # mk = (
- # torch.rand(self.rec_V[:, :, t0:t1].size()) <= self.proba_flashback
- # ).long()
- # self.rec_V[:, :, t0:t1] = V[n, src_head, src_time, dv]
- # self.rec_K[:, :, t0:t1] = K[n, src_head, src_time, dk]
+ mask_V = (torch.rand(N, CH, t1 - t0, DV) <= self.proba_flashback).long()
+ self.rec_V[:, :, t0:t1] = (
+ mask_V * V[n, src_head, src_time, dv]
+ + (1 - mask_V) * self.rec_V[:, :, t0:t1]
+ )
+
+ mask_K = (torch.rand(N, CH, t1 - t0, DK) <= self.proba_flashback).long()
+ self.rec_K[:, :, t0:t1] = (
+ mask_K * K[n, src_head, src_time, dk]
+ + (1 - mask_K) * self.rec_K[:, :, t0:t1]
+ )
exit(0)