class Task:
- def batches(self, split="train"):
+ def batches(self, split="train", nb_to_use=-1, desc=None):
pass
def vocabulary_size(self):
self.train_input = self.tensorize(self.train_descr)
self.test_input = self.tensorize(self.test_descr)
- def batches(self, split="train"):
+ def batches(self, split="train", nb_to_use=-1, desc=None):
assert split in {"train", "test"}
input = self.train_input if split == "train" else self.test_input
for batch in tqdm.tqdm(
self.t_nul = self.token2id["#"]
self.t_true = self.token2id["true"]
self.t_false = self.token2id["false"]
- self.t_pipe = self.token2id["|"]
+ # self.t_pipe = self.token2id["|"]
# Tokenize the train and test sets
self.train_input = self.str2tensor(self.train_descr)
None if len(self.play_descr) == 0 else self.str2tensor(self.play_descr)
)
- def batches(self, split="train"):
+ def batches(self, split="train", nb_to_use=-1, desc=None):
assert split in {"train", "test"}
input = self.train_input if split == "train" else self.test_input
for batch in tqdm.tqdm(
self.nb_codes = max(self.train_input.max(), self.test_input.max()) + 1
- def batches(self, split="train"):
+ def batches(self, split="train", nb_to_use=-1, desc=None):
assert split in {"train", "test"}
input = self.train_input if split == "train" else self.test_input
for batch in tqdm.tqdm(