Update.
authorFrançois Fleuret <francois@fleuret.org>
Tue, 25 Jun 2024 11:52:20 +0000 (13:52 +0200)
committerFrançois Fleuret <francois@fleuret.org>
Tue, 25 Jun 2024 11:52:20 +0000 (13:52 +0200)
main.py
mygpt.py
tasks.py

diff --git a/main.py b/main.py
index 2c759ec..05c3557 100755 (executable)
--- a/main.py
+++ b/main.py
@@ -12,7 +12,7 @@ from torch import nn
 from torch.nn import functional as F
 
 import ffutils
-import mygpt, tasks
+import mygpt, quizz_machine
 
 # world quizzes vs. culture quizzes
 
@@ -209,7 +209,7 @@ else:
 assert args.nb_train_samples % args.batch_size == 0
 assert args.nb_test_samples % args.batch_size == 0
 
-task = tasks.World(
+quizz_machine = quizz_machine.QuizzMachine(
     nb_train_samples=args.nb_train_samples,
     nb_test_samples=args.nb_test_samples,
     batch_size=args.physical_batch_size,
@@ -222,7 +222,7 @@ task = tasks.World(
 
 log_string(f"device {device}")
 
-vocabulary_size = task.vocabulary_size()
+vocabulary_size = quizz_machine.vocabulary_size()
 
 log_string(f"vocabulary_size {vocabulary_size}")
 
@@ -231,8 +231,10 @@ log_string(f"vocabulary_size {vocabulary_size}")
 # Compute the entropy of the training tokens
 
 token_count = 0
-for input in task.batches(split="train", desc="train-entropy"):
-    token_count += F.one_hot(input, num_classes=task.vocabulary_size()).sum((0, 1))
+for input in quizz_machine.batches(split="train", desc="train-entropy"):
+    token_count += F.one_hot(input, num_classes=quizz_machine.vocabulary_size()).sum(
+        (0, 1)
+    )
 token_probas = token_count / token_count.sum()
 entropy = -torch.xlogy(token_probas, token_probas).sum()
 train_set_perplexity = math.exp(entropy)
@@ -254,11 +256,11 @@ if args.max_percents_of_test_in_train >= 0:
 
     nb_test, nb_in_train = 0, 0
     for test_subset in subsets_as_tuples(
-        task.batches(split="test", desc="test-check"), 25000
+        quizz_machine.batches(split="test", desc="test-check"), 25000
     ):
         in_train = set()
         for train_subset in subsets_as_tuples(
-            task.batches(split="train", desc="train-check"), 25000
+            quizz_machine.batches(split="train", desc="train-check"), 25000
         ):
             in_train.update(test_subset.intersection(train_subset))
         nb_in_train += len(in_train)
@@ -275,14 +277,14 @@ if args.max_percents_of_test_in_train >= 0:
 ##############################
 
 
-def one_epoch(model, task):
+def one_epoch(model, quizz_machine):
     optimizer = torch.optim.Adam(model.parameters(), lr=args.learning_rate)
 
     model.train()
 
     nb_train_samples, acc_train_loss = 0, 0.0
 
-    for input in task.batches(split="train"):
+    for input in quizz_machine.batches(split="train"):
         input = input.to(device)
 
         if nb_train_samples % args.batch_size == 0:
@@ -307,14 +309,14 @@ def one_epoch(model, task):
 ######################################################################
 
 
-def run_tests(model, task, deterministic_synthesis):
+def run_tests(model, quizz_machine, deterministic_synthesis):
     with torch.autograd.no_grad():
         model.eval()
 
         nb_test_samples, acc_test_loss = 0, 0.0
         nb_samples_accumulated = 0
 
-        for input in task.batches(split="test"):
+        for input in quizz_machine.batches(split="test"):
             input = input.to(device)
 
             bs = model(mygpt.BracketedSequence(input))
@@ -326,7 +328,7 @@ def run_tests(model, task, deterministic_synthesis):
 
             nb_test_samples += input.size(0)
 
-        main_test_accuracy = task.produce_results(
+        main_test_accuracy = quizz_machine.produce_results(
             n_epoch=n_epoch,
             model=model,
             result_dir=args.result_dir,
@@ -347,7 +349,7 @@ def run_tests(model, task, deterministic_synthesis):
 def create_c_quizzes(
     model,
     other_models,
-    task,
+    quizz_machine,
     nb_for_train=1000,
     nb_for_test=100,
     min_ave_seq_logproba=None,
@@ -359,7 +361,7 @@ def create_c_quizzes(
     while sum([x.size(0) for x in kept]) < nb_for_train + nb_for_test:
         nb_to_generate = 4 * (nb_for_train + nb_for_test)
 
-        new_c_quizzes, nb_correct, ave_seq_logproba = task.create_c_quizzes(
+        new_c_quizzes, nb_correct, ave_seq_logproba = quizz_machine.create_c_quizzes(
             n_epoch=n_epoch,
             result_dir=args.result_dir,
             logger=log_string,
@@ -385,10 +387,10 @@ def create_c_quizzes(
 
     new_c_quizzes = torch.cat(kept, dim=0)[: nb_for_train + nb_for_test]
 
-    task.store_c_quizzes(new_c_quizzes[:nb_for_train], for_train=True)
-    task.store_c_quizzes(new_c_quizzes[nb_for_train:], for_train=False)
+    quizz_machine.store_c_quizzes(new_c_quizzes[:nb_for_train], for_train=True)
+    quizz_machine.store_c_quizzes(new_c_quizzes[nb_for_train:], for_train=False)
 
-    task.save_quizzes(
+    quizz_machine.save_quizzes(
         new_c_quizzes[:72],
         args.result_dir,
         f"culture_c_quiz_{n_epoch:04d}_{model.id:02d}",
@@ -443,19 +445,19 @@ for n_epoch in range(args.nb_epochs):
     )
 
     # improve it
-    one_epoch(model, task)
+    one_epoch(model, quizz_machine)
 
-    task.renew_w_quizzes(args.nb_train_samples // args.nb_gpts)
+    quizz_machine.renew_w_quizzes(args.nb_train_samples // args.nb_gpts)
 
     log_string(
-        f"train_set_composition w_quizzes {task.nb_batch_w_quizzes} c_quizzes {task.nb_batch_c_quizzes}"
+        f"train_set_composition w_quizzes {quizz_machine.nb_batch_w_quizzes} c_quizzes {quizz_machine.nb_batch_c_quizzes}"
     )
 
     # test it
-    run_tests(model, task, deterministic_synthesis=False)
+    run_tests(model, quizz_machine, deterministic_synthesis=False)
 
     log_string(
-        f"test_set_composition w_quizzes {task.nb_batch_w_quizzes} c_quizzes {task.nb_batch_c_quizzes}"
+        f"test_set_composition w_quizzes {quizz_machine.nb_batch_w_quizzes} c_quizzes {quizz_machine.nb_batch_c_quizzes}"
     )
 
     if min([m.main_test_accuracy for m in models]) >= accuracy_to_make_c_quizzes:
@@ -465,7 +467,7 @@ for n_epoch in range(args.nb_epochs):
         ave_seq_logproba = create_c_quizzes(
             model,
             other_models,
-            task,
+            quizz_machine,
             nb_for_train=nb_new_c_quizzes_for_train,
             nb_for_test=nb_new_c_quizzes_for_test,
             min_ave_seq_logproba=min_ave_seq_logproba,
@@ -481,7 +483,7 @@ for n_epoch in range(args.nb_epochs):
 
         # We update everyone
         for model in models:
-            run_tests(model, task, deterministic_synthesis=False)
+            run_tests(model, quizz_machine, deterministic_synthesis=False)
 
 
 ######################################################################
index 809f790..7047849 100755 (executable)
--- a/mygpt.py
+++ b/mygpt.py
@@ -310,9 +310,8 @@ class MyGPT(nn.Module):
                 dist = torch.distributions.categorical.Categorical(logits=logits)
                 t_next = dist.sample()
 
-            if seq_logproba is not None:
-                all_t = torch.arange(t_next.size(0))
-                seq_logproba += logits[all_t, t_next].sum(dim=-1)
+            all_n = torch.arange(t_next.size(0))
+            seq_logproba += logits[all_n, t_next].sum(dim=-1)
 
             input[:, s] = ar_mask[:, s] * t_next + (1 - ar_mask[:, s]) * input[:, s]
 
index a522728..50ded2c 100755 (executable)
--- a/tasks.py
+++ b/tasks.py
@@ -32,7 +32,11 @@ def masked_inplace_autoregression(
 ):
     assert input.size() == ar_mask.size()
 
-    batches = zip(input.split(batch_size), ar_mask.split(batch_size))
+    batches = zip(
+        input.split(batch_size),
+        ar_mask.split(batch_size),
+        seq_logproba.split(batch_size),
+    )
 
     if progress_bar_desc is not None:
         batches = tqdm.tqdm(
@@ -46,7 +50,7 @@ def masked_inplace_autoregression(
         t = model.training
         model.eval()
 
-        for input, ar_mask in batches:
+        for input, ar_mask, seq_logproba in batches:
             model.masked_inplace_autoregression(
                 input=input,
                 ar_mask=ar_mask,
@@ -81,7 +85,7 @@ class Task:
 import world
 
 
-class World(Task):
+class QuizzMachine(Task):
     def save_image(self, input, result_dir, filename, logger):
         img = world.seq2img(input.to("cpu"), self.height, self.width)
         image_name = os.path.join(result_dir, filename)
@@ -178,13 +182,14 @@ class World(Task):
             input = input[:nmax]
             ar_mask = self.make_ar_mask(input)
             result = input.clone() * (1 - ar_mask)
+            seq_logproba = torch.empty(input.size(0), device=self.device)
 
             masked_inplace_autoregression(
                 model=model,
                 batch_size=self.batch_size,
                 input=result,
                 ar_mask=ar_mask,
-                seq_logproba=None,
+                seq_logproba=seq_logproba,
                 temperature=1.0,
                 deterministic_synthesis=deterministic_synthesis,
                 progress_bar_desc=None,
@@ -218,13 +223,14 @@ class World(Task):
         input = self.test_w_quizzes[:96]
         ar_mask = self.make_ar_mask(input)
         result = input.clone() * (1 - ar_mask)
+        seq_logproba = torch.empty(input.size(0), device=self.device)
 
         masked_inplace_autoregression(
             model=model,
             batch_size=self.batch_size,
             input=result,
             ar_mask=ar_mask,
-            seq_logproba=None,
+            seq_logproba=seq_logproba,
             temperature=1.0,
             deterministic_synthesis=deterministic_synthesis,
             progress_bar_desc=None,
@@ -262,7 +268,7 @@ class World(Task):
         nb,
         model,
         other_models,
-        min_ave_seq_logproba=None,
+        min_ave_seq_logproba,
     ):
         ###############################################################
         # Generate quizzes with model
@@ -272,7 +278,7 @@ class World(Task):
         )
 
         ar_mask = torch.full(c_quizzes.size(), 1, device=self.device)
-        seq_logproba = torch.empty(nb, device=self.device)
+        seq_logproba = torch.empty(ar_mask.size(0), device=self.device)
 
         temperature = 1
         d_temperature = 1
@@ -302,11 +308,11 @@ class World(Task):
             # Oh man that's ugly
             if ave_seq_logproba < min_ave_seq_logproba * 1.1:
                 if d_temperature > 0:
-                    d_temperature *= -0.5
+                    d_temperature *= -1 / 3
                 temperature += d_temperature
             elif ave_seq_logproba > min_ave_seq_logproba:
                 if d_temperature < 0:
-                    d_temperature *= -0.5
+                    d_temperature *= -1 / 3
                 temperature += d_temperature
             else:
                 break
@@ -326,6 +332,7 @@ class World(Task):
         )
 
         ar_mask = self.make_ar_mask(c_quizzes)
+        seq_logproba = torch.empty(ar_mask.size(0), device=self.device)
 
         ###############################################################
         # Check how many of the other models can solve them in both
@@ -341,7 +348,7 @@ class World(Task):
                 batch_size=self.batch_size,
                 input=result,
                 ar_mask=ar_mask,
-                seq_logproba=None,
+                seq_logproba=seq_logproba,
                 temperature=1.0,
                 deterministic_synthesis=True,
                 progress_bar_desc="solving c_quizzes",
@@ -357,7 +364,7 @@ class World(Task):
                 batch_size=self.batch_size,
                 input=reverse_result,
                 ar_mask=ar_mask,
-                seq_logproba=None,
+                seq_logproba=seq_logproba,
                 temperature=1.0,
                 deterministic_synthesis=True,
                 progress_bar_desc="solving reversed c_quizzes",