Update
authorFrançois Fleuret <francois@fleuret.org>
Wed, 22 Mar 2023 15:23:00 +0000 (16:23 +0100)
committerFrançois Fleuret <francois@fleuret.org>
Wed, 22 Mar 2023 15:23:00 +0000 (16:23 +0100)
beaver.py
mygpt.py

index bdc12aa..6ec0fb2 100755 (executable)
--- a/beaver.py
+++ b/beaver.py
@@ -129,18 +129,35 @@ for n in vars(args):
 ######################################################################
 
 
+def random_order(result, fixed_len):
+    order = torch.rand(result.size(), device=result.device)
+    order[:, :fixed_len] = torch.linspace(-2, -1, fixed_len, device=order.device)
+    return order.sort(1).indices
+
+
+def shuffle(x, order, reorder=False):
+    if x.dim() == 3:
+        order = order.unsqueeze(-1).expand(-1, -1, x.size(-1))
+    if reorder:
+        y = x.new(x.size())
+        y.scatter_(1, order, x)
+        return y
+    else:
+        return x.gather(1, order)
+
+
 # ar_mask is a Boolean matrix of same shape as input, with 1s on the
 # tokens that should be generated
 
 
-def masked_inplace_autoregression(model, batch_size, input, ar_mask):
+def masked_inplace_autoregression(model, batch_size, input, ar_mask, order=None):
     for input, ar_mask in zip(input.split(batch_size), ar_mask.split(batch_size)):
         i = (ar_mask.sum(0) > 0).nonzero()
         if i.min() > 0:
             # Needed to initialize the model's cache
-            model(mygpt.BracketedSequence(input, 0, i.min()))
+            model(mygpt.BracketedSequence(input, 0, i.min()), order=order)
         for s in range(i.min(), i.max() + 1):
-            output = model(mygpt.BracketedSequence(input, s, 1)).x
+            output = model(mygpt.BracketedSequence(input, s, 1), order=order).x
             logits = output[:, s]
             if args.deterministic_synthesis:
                 t_next = logits.argmax(1)
@@ -162,8 +179,9 @@ def compute_perplexity(model, split="train"):
 
         for input in task.batches(split=split):
             input = input.to(device)
-
-            output = model(mygpt.BracketedSequence(input)).x
+            order = random_order(input, task.height * task.width)
+            input = shuffle(input, order)
+            output = model(mygpt.BracketedSequence(input), order=order).x
             loss = F.cross_entropy(output.transpose(1, 2), input)
             acc_loss += loss.item() * input.size(0)
             nb_samples += input.size(0)
@@ -227,7 +245,10 @@ def oneshot(gpt, task):
 
         acc_train_loss, nb_train_samples = 0, 0
         for mazes, policies in task.policy_batches(split="train"):
-            output_gpt = gpt(mygpt.BracketedSequence(mazes), mode=args.oneshot_input).x
+            order = random_order(input, task.height * task.width)
+            x = shuffle(mazes, order)
+            x = gpt(mygpt.BracketedSequence(x), mode=args.oneshot_input, order=order).x
+            output_gpt = shuffle(x, order, reorder=True)
             output = model(output_gpt)
 
             loss = compute_loss(mazes, output, policies, task.height, task.width)
@@ -240,7 +261,10 @@ def oneshot(gpt, task):
 
         acc_test_loss, nb_test_samples = 0, 0
         for mazes, policies in task.policy_batches(split="test"):
-            output_gpt = gpt(mygpt.BracketedSequence(mazes), mode=args.oneshot_input).x
+            order = random_order(input, task.height * task.width)
+            x = shuffle(mazes, order)
+            x = gpt(mygpt.BracketedSequence(x), mode=args.oneshot_input, order=order).x
+            output_gpt = shuffle(x, order, reorder=True)
             output = model(output_gpt)
             loss = compute_loss(mazes, output, policies, task.height, task.width)
             acc_test_loss += loss.item() * mazes.size(0)
@@ -253,7 +277,10 @@ def oneshot(gpt, task):
         # -------------------
         mazes = task.test_input[:32, : task.height * task.width]
         policies = task.test_policies[:32]
-        output_gpt = gpt(mygpt.BracketedSequence(mazes), mode=args.oneshot_input).x
+        order = random_order(input, task.height * task.width)
+        x = shuffle(mazes, order)
+        x = gpt(mygpt.BracketedSequence(x), mode=args.oneshot_input, order=order).x
+        output_gpt = shuffle(x, order, reorder=True)
         output = model(output_gpt)
         if args.oneshot_output == "policy":
             targets = policies.permute(0, 2, 1)
@@ -290,7 +317,7 @@ def oneshot(gpt, task):
 
 
 class Task:
-    def batches(self, split="train"):
+    def batches(self, split="train", nb_to_use=-1, desc=None):
         pass
 
     def vocabulary_size(self):
@@ -350,17 +377,19 @@ class TaskMaze(Task):
 
         self.nb_codes = self.train_input.max() + 1
 
-    def batches(self, split="train", nb_to_use=-1):
+    def batches(self, split="train", nb_to_use=-1, desc=None):
         assert split in {"train", "test"}
         input = self.train_input if split == "train" else self.test_input
         if nb_to_use > 0:
             input = input[:nb_to_use]
+        if desc is None:
+            desc = f"epoch-{split}"
         for batch in tqdm.tqdm(
-            input.split(self.batch_size), dynamic_ncols=True, desc=f"epoch-{split}"
+            input.split(self.batch_size), dynamic_ncols=True, desc=desc
         ):
             yield batch
 
-    def policy_batches(self, split="train", nb_to_use=-1):
+    def policy_batches(self, split="train", nb_to_use=-1, desc=None):
         assert split in {"train", "test"}
         input = self.train_input if split == "train" else self.test_input
         policies = self.train_policies if split == "train" else self.test_policies
@@ -371,10 +400,12 @@ class TaskMaze(Task):
             input = input[:nb_to_use]
             policies = policies[:nb_to_use]
 
+        if desc is None:
+            desc = f"epoch-{split}"
         for batch in tqdm.tqdm(
             zip(input.split(self.batch_size), policies.split(self.batch_size)),
             dynamic_ncols=True,
-            desc=f"epoch-{split}",
+            desc=desc,
         ):
             yield batch
 
@@ -388,7 +419,11 @@ class TaskMaze(Task):
             ar_mask = result.new_zeros(result.size())
             ar_mask[:, self.height * self.width :] = 1
             result *= 1 - ar_mask
-            masked_inplace_autoregression(model, self.batch_size, result, ar_mask)
+            order = random_order(result, self.height * self.width)
+            masked_inplace_autoregression(
+                model, self.batch_size, result, ar_mask, order=order
+            )
+            result = shuffle(result, order, reorder=True)
             mazes, paths = self.seq2map(result)
             nb_correct += maze.path_correctness(mazes, paths).long().sum()
             nb_total += mazes.size(0)
@@ -568,7 +603,9 @@ for n_epoch in range(nb_epochs_finished, args.nb_epochs):
 
     for input in task.batches(split="train"):
         input = input.to(device)
-        output = model(mygpt.BracketedSequence(input)).x
+        order = random_order(input, task.height * task.width)
+        input = shuffle(input, order)
+        output = model(mygpt.BracketedSequence(input), order=order).x
         loss = F.cross_entropy(output.transpose(1, 2), input)
         acc_train_loss += loss.item() * input.size(0)
         nb_train_samples += input.size(0)
index 232b604..311ff6b 100755 (executable)
--- a/mygpt.py
+++ b/mygpt.py
@@ -85,26 +85,45 @@ class AddPositionalEncoding(nn.Module):
 
     # [Vaswani et al 2018] PE_{t,2i} = sin(t/(L^{2i/D})), PE_{t,2i+1} = cos(t/(L^{2i/D}))
 
-    def forward(self, bs, order=None):
+    def forward(self, bs, order):  # NxTxD, T
         if bs.first == 0:
-            t = torch.arange(bs.x.size(1), dtype=bs.x.dtype, device=bs.x.device)[
-                :, None
-            ]
-            j = torch.arange(bs.x.size(2), dtype=bs.x.dtype, device=bs.x.device)[
+            t = (
+                torch.arange(bs.x.size(1) + 1, dtype=bs.x.dtype, device=bs.x.device)[
+                    :, None
+                ]
+                - 1
+            )
+            j = torch.arange(bs.x.size(2) // 2, dtype=bs.x.dtype, device=bs.x.device)[
                 None, :
             ]
             k = j % 2
-            self.pe = torch.sin(
-                t / (self.len_max ** ((j - k) / bs.x.size(2))) + math.pi / 2 * k
+            pe = (
+                torch.sin(
+                    t / (self.len_max ** ((j - k) / bs.x.size(2))) + math.pi / 2 * k
+                )
+                .unsqueeze(0)
+                .expand(bs.x.size(0), -1, -1)
             )
 
-            if order is not None:
-                self.pe = self.pe.gather(1, order.unsqueeze(-1).expand_as(self.pe))
+            order_output = order + 1
+            order_input = torch.cat(
+                (order.new_zeros(order.size(0), 1), order[:, :-1] + 1), 1
+            )
+
+            self.pe = torch.cat(
+                (
+                    pe.gather(1, order_input.unsqueeze(-1).expand(-1, -1, pe.size(-1))),
+                    pe.gather(
+                        1, order_output.unsqueeze(-1).expand(-1, -1, pe.size(-1))
+                    ),
+                ),
+                2,
+            )
 
             self.cache_y = bs.x.new(bs.x.size())
 
         self.cache_y[:, bs.first : bs.first + bs.nb] = (
-            bs.slice() + self.pe[bs.first : bs.first + bs.nb]
+            bs.slice() + self.pe[:, bs.first : bs.first + bs.nb]
         )
 
         bs.x = self.cache_y
@@ -252,8 +271,10 @@ class MyGPT(nn.Module):
 
     def forward(self, bs, mode="standard", order=None):
         bs = BracketedSequence(F.pad(bs.x, (1, -1)), bs.first, bs.nb)
-        if order is not None:
-            order = F.pad(order + 1, (1, -1))
+        if order is None:
+            order = torch.arange(bs.x.size(1), device=bs.x.device)[None, :].expand_as(
+                bs.x
+            )
         bs = self.embedding(bs)
         bs = self.pe(bs, order)
 
@@ -269,7 +290,7 @@ class MyGPT(nn.Module):
                 r += [bs.slice()]
             bs = BracketedSequence(torch.cat(r, -1))
         else:
-            raise ValueError
+            raise ValueError(f"{mode=}")
         return bs